Inflammation and Immune Metabolism

  • Carmen Paus
  • Derk Draper
  • Mangala Srinivas
  • Erik H. J. G. AarntzenEmail author


Inflammation is a complex biological response of body tissues to harmful stimuli, with the intention to eliminate the cause of injury, protect from further damage, and initiate tissue repair. Inflammation is a rather generic term that covers a broad range of types of responses which, depending on the causal stimulus and subsequent actions, involve pathogenic cells, stromal cells, and cells of the innate and adaptive immune system, in varying composition (Figs. 7.1 and 7.2). However, common to all inflammatory conditions is the delicate balance between too little or too severe and inappropriate timing or duration, all of which can lead to progressive tissue destruction. For example, chronic inflammation may lead to a host of diseases, such as autoimmune diseases and even cancer [1]. Thus, inflammation is a highly dynamic and tightly regulated process that demands metabolic reprogramming of the involved cell types at various stages to respond with appropriate cell numbers and cell types. In this chapter, we will discuss how imaging can play a role in the assessment of inflammation and immune metabolism. We propose a simplified five-step model to indicate the potential targets for imaging in the ensuing immune response, while acknowledging that these simplified steps are iterative and overlapping in practice.


Inflammation Imaging Metabolism T-cells Macrophages MRI PET SPECT 



This work was supported by a European Research Council (ERC) Grant ERC-2104-StG-336454-CoNQUeST and Dutch Cancer Society grant KUN2015-8106.


  1. 1.
    Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454(7203):436–44.PubMedCrossRefGoogle Scholar
  2. 2.
    Green DR, Ferguson T, Zitvogel L, Kroemer G. Immunogenic and tolerogenic cell death. Nat Rev Immunol. 2009;9(5):353–63.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Chawla A, Nguyen KD, Goh YP. Macrophage-mediated inflammation in metabolic disease. Nat Rev Immunol. 2011;11(11):738–49.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Gordon S. Phagocytosis: an Immunobiologic process. Immunity. 2016;44(3):463–75.PubMedCrossRefGoogle Scholar
  5. 5.
    Jenne CN, Kubes P. Platelets in inflammation and infection. Platelets. 2015;26(4):286–92.PubMedCrossRefGoogle Scholar
  6. 6.
    Pober JS, Sessa WC. Evolving functions of endothelial cells in inflammation. Nat Rev Immunol. 2007;7(10):803–15.PubMedCrossRefGoogle Scholar
  7. 7.
    Friedl P, Weigelin B. Interstitial leukocyte migration and immune function. Nat Immunol. 2008;9(9):960–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Weninger W, Biro M, Jain R. Leukocyte migration in the interstitial space of non-lymphoid organs. Nat Rev Immunol. 2014;14(4):232–46.PubMedCrossRefGoogle Scholar
  9. 9.
    Abtin A, Jain R, Mitchell AJ, Roediger B, Brzoska AJ, Tikoo S, et al. Perivascular macrophages mediate neutrophil recruitment during bacterial skin infection. Nat Immunol. 2014;15(1):45–53.PubMedCrossRefGoogle Scholar
  10. 10.
    Shi C, Pamer EG. Monocyte recruitment during infection and inflammation. Nat Rev Immunol. 2011;11(11):762–74.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Bachmann MF, Kopf M, Marsland BJ. Chemokines: more than just road signs. Nat Rev Immunol. 2006;6(2):159–64.PubMedCrossRefGoogle Scholar
  12. 12.
    Coombes JL, Robey EA. Dynamic imaging of host-pathogen interactions in vivo. Nat Rev Immunol. 2010;10(5):353–64.PubMedCrossRefGoogle Scholar
  13. 13.
    Diaz LA Jr, Foss CA, Thornton K, Nimmagadda S, Endres CJ, Uzuner O, et al. Imaging of musculoskeletal bacterial infections by [124I]FIAU-PET/CT. PLoS One. 2007;2(10):e1007.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Pullambhatla M, Tessier J, Beck G, Jedynak B, Wurthner JU, Pomper MG. [(125)I]FIAU imaging in a preclinical model of lung infection: quantification of bacterial load. Am J Nucl Med Mol Imaging. 2012;2(3):260–70.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Ferro-Flores G, Ocampo-Garcia BE, Melendez-Alafort L. Development of specific radiopharmaceuticals for infection imaging by targeting infectious micro-organisms. Curr Pharm Des. 2012;18(8):1098–106.PubMedCrossRefGoogle Scholar
  16. 16.
    Dorward DAD. Imaging inflammation: molecular strategies to visualize key components of the inflammatory cascade, from initiation to resolution. Pharmacol Ther. 2012;135(2):182–99.PubMedCrossRefGoogle Scholar
  17. 17.
    Malviya G, Signore A, Lagana B, Dierckx RA. Radiolabelled peptides and monoclonal antibodies for therapy decision making in inflammatory diseases. Curr Pharm Des. 2008;14(24):2401–14.PubMedCrossRefGoogle Scholar
  18. 18.
    Annovazzi A, Biancone L, Caviglia R, Chianelli M, Capriotti G, Mather SJ, et al. 99mTc-interleukin-2 and (99m)Tc-HMPAO granulocyte scintigraphy in patients with inactive Crohn's disease. Eur J Nucl Med Mol Imaging. 2003;30(3):374–82.PubMedCrossRefGoogle Scholar
  19. 19.
    Rennen HJ, Bleeker-Rovers CP, van Eerd JE, Frielink C, Oyen WJ, Corstens FH, et al. 99mTc-labeled interleukin-8 for scintigraphic detection of pulmonary infections. Chest. 2004;126(6):1954–61.PubMedCrossRefGoogle Scholar
  20. 20.
    Vos FJ, Bleeker-Rovers CP, Sturm PD, Krabbe PF, van Dijk AP, Cuijpers ML, et al. 18F-FDG PET/CT for detection of metastatic infection in gram-positive bacteremia. J Nucl Med. 2010;51(8):1234–40.PubMedCrossRefGoogle Scholar
  21. 21.
    Malviya G, Galli F, Sonni I, Signore A. Imaging T-lymphocytes in inflammatory diseases: a nuclear medicine approach. Q J Nucl Med Mol Imaging. 2014;58(3):237–57.PubMedGoogle Scholar
  22. 22.
    Galli F, Histed S, Aras O. NK cell imaging by in vitro and in vivo labelling approaches. Q J Nucl Med Mol Imaging. 2014;58(3):276–83.PubMedGoogle Scholar
  23. 23.
    de Kleijn EM, Oyen WJ, Corstens FH, van der Meer JW. Utility of indium-111-labeled polyclonal immunoglobulin G scintigraphy in fever of unknown origin. The Netherlands FUO imaging group. J Nucl Med. 1997;38(3):484–9.PubMedGoogle Scholar
  24. 24.
    Biswas SK, Mantovani A. Orchestration of metabolism by macrophages. Cell Metab. 2012;15(4):432–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Norata GD, Caligiuri G, Chavakis T, Matarese G, Netea MG, Nicoletti A, et al. The cellular and molecular basis of translational immunometabolism. Immunity. 2015;43(3):421–34.PubMedCrossRefGoogle Scholar
  26. 26.
    Biswas SK. Metabolic reprogramming of immune cells in cancer progression. Immunity. 2015;43(3):435–49.PubMedCrossRefGoogle Scholar
  27. 27.
    Germain RN, Miller MJ, Dustin ML, Nussenzweig MC. Dynamic imaging of the immune system: progress, pitfalls and promise. Nat Rev Immunol. 2006;6(7):497–507.PubMedCrossRefGoogle Scholar
  28. 28.
    Lee M, Mandl JN, Germain RN, Yates AJ. The race for the prize: T-cell trafficking strategies for optimal surveillance. Blood. 2012;120(7):1432–8.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Pearce Erika LE. Metabolic pathways in immune cell activation and quiescence. Immunity. 2013;38(4):633–43.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Frauwirth KA, Thompson CB. Regulation of T lymphocyte metabolism. J Immunol. 2004;172(8):4661–5.PubMedCrossRefGoogle Scholar
  31. 31.
    Palmer CS, Ostrowski M, Balderson B, Christian N, Crowe SM. Glucose metabolism regulates T cell activation, differentiation, and functions. Front Immunol. 2015;6:1.Google Scholar
  32. 32.
    Sena Laura AL. Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity. 2013;38(2):225–36.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Fox CJ, Hammerman PS, Thompson CB. Fuel feeds function: energy metabolism and the T-cell response. Nat Rev Immunol. 2005;5(11):844–52.PubMedCrossRefGoogle Scholar
  34. 34.
    Pearce Erika LE. Fueling immunity: insights into metabolism and lymphocyte function. Science. 2013;342(6155).Google Scholar
  35. 35.
    Maekawa Y, Ishifune C, Tsukumo S, Hozumi K, Yagita H, Yasutomo K. Notch controls the survival of memory CD4+ T cells by regulating glucose uptake. Nat Med. 2015;21(1):55–61.PubMedCrossRefGoogle Scholar
  36. 36.
    Macintyre AN, Gerriets VA, Nichols AG, Michalek RD, Rudolph MC, Deoliveira D, et al. The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metab. 2014;20(1):61–72.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Lanzavecchia A, Sallusto F. Understanding the generation and function of memory T cell subsets. Curr Opin Immunol. 2005;17(3):326–32.PubMedCrossRefGoogle Scholar
  38. 38.
    Ginhoux F, Schultze JL, Murray PJ, Ochando J, Biswas SK. New insights into the multidimensional concept of macrophage ontogeny, activation and function. Nat Immunol. 2015;17(1):34–40.CrossRefGoogle Scholar
  39. 39.
    Zhang X, Mosser DM. Macrophage activation by endogenous danger signals. J Pathol. 2008;214(2):161–78.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8(12):958–69.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Murray PJ, Wynn TA. Obstacles and opportunities for understanding macrophage polarization. J Leukoc Biol. 2011;89(4):557–63.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Cairo G, Recalcati S, Mantovani A, Locati M. Iron trafficking and metabolism in macrophages: contribution to the polarized phenotype. Trends Immunol. 2011;32(6):241–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Recalcati S, Locati M, Cairo G. Systemic and cellular consequences of macrophage control of iron metabolism. Semin Immunol. 2012;24(6):393–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Recalcati S, Locati M, Gammella E, Invernizzi P, Cairo G. Iron levels in polarized macrophages: regulation of immunity and autoimmunity. Autoimmun Rev. 2012;11(12):883–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Brinkmann VV. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–5.PubMedCrossRefGoogle Scholar
  46. 46.
    Jones HA, Cadwallader KA, White JF, Uddin M, Peters AM, Chilvers ER. Dissociation between respiratory burst activity and deoxyglucose uptake in human neutrophil granulocytes: implications for interpretation of (18)F-FDG PET images. J Nucl Med. 2002;43(5):652–7.PubMedGoogle Scholar
  47. 47.
    Jones HA, Sriskandan S, Peters AM, Pride NB, Krausz T, Boobis AR, et al. Dissociation of neutrophil emigration and metabolic activity in lobar pneumonia and bronchiectasis. Eur Respir J. 1997;10(4):795–803.PubMedGoogle Scholar
  48. 48.
    Chen DL, Rosenbluth DB, Mintun MA, Schuster DP. FDG-PET imaging of pulmonary inflammation in healthy volunteers after airway instillation of endotoxin. J Appl Physiol. 2006;100(5):1602–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Campanella M, Turkheimer FE. TSPO: functions and applications of a mitochondrial stress response pathway. Biochem Soc Trans. 2015;43(4):593–4.PubMedCrossRefGoogle Scholar
  50. 50.
    Janczar K, Su Z, Raccagni I, Anfosso A, Kelly C, Durrenberger PF, et al. The 18-kDa mitochondrial translocator protein in gliomas: from the bench to bedside. Biochem Soc Trans. 2015;43(4):579–85.PubMedCrossRefGoogle Scholar
  51. 51.
    Cerami C, Perani D. Imaging neuroinflammation in ischemic stroke and in the atherosclerotic vascular disease. Curr Vasc Pharmacol. 2015;13(2):218–22.PubMedCrossRefGoogle Scholar
  52. 52.
    Cuhlmann S, Gsell W, Van der Heiden K, Habib J, Tremoleda JL, Khalil M, et al. In vivo mapping of vascular inflammation using the translocator protein tracer 18F-FEDAA1106. Mol Imaging. 2014;13Google Scholar
  53. 53.
    Varley J, Brooks DJ, Edison P. Imaging neuroinflammation in Alzheimer's disease and other dementias: recent advances and future directions. Alzheimers Dement. 2015;11(9):1110–20.PubMedCrossRefGoogle Scholar
  54. 54.
    Ordonez AA, Pokkali S, DeMarco VP, Klunk M, Mease RC, Foss CA, et al. Radioiodinated DPA-713 imaging correlates with bactericidal activity of tuberculosis treatments in mice. Antimicrob Agents Chemother. 2015;59(1):642–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Vallabhajosula SR, Harwig JF, Wolf W. The mechanism of tumor localization of gallium-67 citrate: role of transferrin binding and effect of tumor pH. Int J Nucl Med Biol. 1981;8(4):363–70.PubMedCrossRefGoogle Scholar
  56. 56.
    Nanni C, Errani C, Boriani L, Fantini L, Ambrosini V, Boschi S, et al. 68Ga-citrate PET/CT for evaluating patients with infections of the bone: preliminary results. J Nucl Med. 2010;51(12):1932–6.PubMedCrossRefGoogle Scholar
  57. 57.
    Weiner R, Hoffer PB, Thakur ML. Lactoferrin: its role as a Ga-67-binding protein in polymorphonuclear leukocytes. J Nucl Med. 1981;22(1):32–7.PubMedGoogle Scholar
  58. 58.
    Yeh JJ, Huang YC, Teng WB, Huang YF, Chuang YW, Hsu CC. The role of gallium-67 scintigraphy in comparing inflammatory activity between tuberculous and nontuberculous mycobacterial pulmonary diseases. Nucl Med Commun. 2011;32(5):392–401.PubMedCrossRefGoogle Scholar
  59. 59.
    Amirbekian V, Lipinski MJ, Briley-Saebo KC, Amirbekian S, Aguinaldo JG, Weinreb DB, et al. Detecting and assessing macrophages in vivo to evaluate atherosclerosis noninvasively using molecular MRI. Proc Natl Acad Sci U S A. 2007;104(3):961–6.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Perez-Medina C, Tang J, Abdel-Atti D, Hogstad B, Merad M, Fisher EA, et al. PET imaging of tumor-associated macrophages with 89Zr-labeled high-density lipoprotein nanoparticles. J Nucl Med. 2015;56(8):1272–7.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Paulos CM, Turk MJ, Breur GJ, Low PS. Folate receptor-mediated targeting of therapeutic and imaging agents to activated macrophages in rheumatoid arthritis. Adv Drug Deliv Rev. 2004;56(8):1205–17.PubMedCrossRefGoogle Scholar
  62. 62.
    Muller C. Folate based radiopharmaceuticals for imaging and therapy of cancer and inflammation. Curr Pharm Des. 2012;18(8):1058–83.PubMedCrossRefGoogle Scholar
  63. 63.
    Han W, Zaynagetdinov R, Yull FE, Polosukhin VV, Gleaves LA, Tanjore H, et al. Molecular imaging of folate receptor beta-positive macrophages during acute lung inflammation. Am J Respir Cell Mol Biol. 2015;53(1):50–9.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Kelderhouse LE, Mahalingam S, Low PS. Predicting response to therapy for autoimmune and inflammatory diseases using a Folate receptor-targeted near-infrared fluorescent imaging agent. Mol Imaging Biol. 2016;18(2):201–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Van De Wiele C, Sathekge M, Maes A. Targeting monocytes and macrophages by means of SPECT and PET. Q J Nucl Med Mol Imaging. 2014;58(3):269–75.Google Scholar
  66. 66.
    Siwowska K, Muller C. Preclinical development of small-molecular-weight folate-based radioconjugates: a pharmacological perspective. Q J Nucl Med Mol Imaging. 2015;59(3):269–86.PubMedGoogle Scholar
  67. 67.
    Weissleder R, Nahrendorf M, Pittet MJ. Imaging macrophages with nanoparticles. Nat Mater. 2014;13(2):125–38.PubMedCrossRefGoogle Scholar
  68. 68.
    Sharifi S, Seyednejad H, Laurent S, Atyabi F, Saei AA, Mahmoudi M. Superparamagnetic iron oxide nanoparticles for in vivo molecular and cellular imaging. Contrast Media Mol Imaging. 2015;10(5):329–55.PubMedCrossRefGoogle Scholar
  69. 69.
    Gaglia JL, Harisinghani M, Aganj I, Wojtkiewicz GR, Hedgire S, Benoist C, et al. Noninvasive mapping of pancreatic inflammation in recent-onset type-1 diabetes patients. Proc Natl Acad Sci U S A. 2015;112(7):2139–44.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Wu CC. PET imaging of inflammation biomarkers. Theranostics. 2013;3(7):448–66.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Ozguven MA, Karacalioglu AO, Ince S, Emer MO. Altered biodistribution of FDG in patients with type-2 diabetes mellitus. Ann Nucl Med. 2014;28(6):505–11.PubMedCrossRefGoogle Scholar
  72. 72.
    Vos FJ, Kullberg BJ, Sturm PD, Krabbe PF, van Dijk AP, Wanten GJ, et al. Metastatic infectious disease and clinical outcome in Staphylococcus aureus and streptococcus species bacteremia. Medicine (Baltimore). 2012;91(2):86–94.CrossRefGoogle Scholar
  73. 73.
    Vos FJ, Bleeker-Rovers CP, Oyen WJ. The use of FDG-PET/CT in patients with febrile neutropenia. Semin Nucl Med. 2013;43(5):340–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Lee YH, Choi SJ, Ji JD, Song GG. Diagnostic accuracy of 18F-FDG PET or PET/CT for large vessel vasculitis: a meta-analysis. Z Rheumatol. 2015;Google Scholar
  75. 75.
    Rabkin Z, Israel O, Keidar Z. Do hyperglycemia and diabetes affect the incidence of false-negative 18F-FDG PET/CT studies in patients evaluated for infection or inflammation and cancer? A Comparative analysis. J Nucl Med. 2010;51(7):1015–20.PubMedCrossRefGoogle Scholar
  76. 76.
    Weinstein EA, Ordonez AA, DeMarco VP, Murawski AM, Pokkali S, MacDonald EM, et al. Imaging Enterobacteriaceae infection in vivo with 18F-fluorodeoxysorbitol positron emission tomography. Sci Transl Med. 2014;6(259):259ra146.Google Scholar
  77. 77.
    Gowrishankar G, Namavari M, Jouannot EB, Hoehne A, Reeves R, Hardy J, et al. Investigation of 6-[(1)(8)F]-fluoromaltose as a novel PET tracer for imaging bacterial infection. PLoS One. 2014;9(9):e107951.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Shields AF, Grierson JR, Dohmen BM, Machulla HJ, Stayanoff JC, Lawhorn-Crews JM, et al. Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med. 1998;4(11):1334–6.PubMedCrossRefGoogle Scholar
  79. 79.
    Laing RE, Nair-Gill E, Witte ON, Radu CG. Visualizing cancer and immune cell function with metabolic positron emission tomography. Curr Opin Genet Dev. 2010;20(1):100–5.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Bollineni VR, Kramer GM, Jansma EP, Liu Y, Oyen WJ. A systematic review on [(18)F]FLT-PET uptake as a measure of treatment response in cancer patients. Eur J Cancer. 2016;55:81–97.PubMedCrossRefGoogle Scholar
  81. 81.
    Bading James RJ. Imaging of cell proliferation: status and prospects. J Nucl Med. 49.Google Scholar
  82. 82.
    Schoder H, Zelenetz A, Hamlin P, Gavane S, Horwitz S, Matasar M, et al. Prospective study of FLT PET for early interim response assessment in advanced stage B-cell lymphoma. J Nucl Med. 2015;Google Scholar
  83. 83.
    Lee H, Kim SK, Kim YI, Kim TS, Kang SH, Park WS, et al. Early determination of prognosis by interim 3′-deoxy-3′-18F-fluorothymidine PET in patients with non-Hodgkin lymphoma. J Nucl Med. 2014;55(2):216–22.PubMedCrossRefGoogle Scholar
  84. 84.
    Aarntzen EH, Srinivas M, De Wilt JH, Jacobs JF, Lesterhuis WJ, Windhorst AD, et al. Early identification of antigen-specific immune responses in vivo by [18F]-labeled 3′-fluoro-3′-deoxy-thymidine ([18F]FLT) PET imaging. Proc Natl Acad Sci U S A. 2011;108(45):18396–9.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Troost EG, Vogel WV, Merkx MA, Slootweg PJ, Marres HA, Peeters WJ, et al. 18F-FLT PET does not discriminate between reactive and metastatic lymph nodes in primary head and neck cancer patients. J Nucl Med. 2007;48(5):726–35.PubMedCrossRefGoogle Scholar
  86. 86.
    Radu Caius GC. Molecular imaging of lymphoid organs and immune activation by positron emission tomography with a new [18F]-labeled 2′-deoxycytidine analog. Nat Med. 14(7):783–8.Google Scholar
  87. 87.
    Brewer S, Nair-Gill E, Wei B, Chen L, Li X, Riedinger M, Campbell DO, Wiltzius S, Satyamurthy N, Phelps ME, Radu C, Witte ON, Braun J. Uptake of [18F]1-(2′-deoxy-2′-arabinofuranosyl) cytosine indicates intestinal inflammation in mice. Gastroenterology. 2010;138(4):1266–75.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Nair-Gill E, Wiltzius SM, Wei XX, Cheng D, Riedinger M, Radu CG, et al. PET probes for distinct metabolic pathways have different cell specificities during immune responses in mice. J Clin Invest. 2010;120(6):2005–15.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Matter CM, Wyss MT, Meier P, Spath N, von Lukowicz T, Lohmann C, et al. 18F-choline images murine atherosclerotic plaques ex vivo. Arterioscler Thromb Vasc Biol. 2006;26(3):584–9.PubMedCrossRefGoogle Scholar
  90. 90.
    Laitinen IE, Luoto P, Nagren K, Marjamaki PM, Silvola JM, Hellberg S, et al. Uptake of 11C-choline in mouse atherosclerotic plaques. J Nucl Med. 2010;51(5):798–802.PubMedCrossRefGoogle Scholar
  91. 91.
    Le C, van de Weijer EP, Pos FJ, Vogel WV. Active inflammation in 18F-methylcholine PET/CT. Eur J Nucl Med Mol Imaging. 2010;37(3):654–5.PubMedCrossRefGoogle Scholar
  92. 92.
    Huang TT. A comparative uptake study of multiplexed PET tracers in mice with turpentine-induced inflammation. Molecules. 2012;17(12):13948–59.PubMedCrossRefGoogle Scholar
  93. 93.
    van Waarde Aren A. Proliferation markers for the differential diagnosis of tumor and inflammation. Curr Pharm Des. 2008;14(31):3326–39.PubMedCrossRefGoogle Scholar
  94. 94.
    Tsuyuguchi Naohiro N. Evaluation of treatment effects in brain abscess with positron emission tomography: comparison of fluorine-18-fluorodeoxyglucose and carbon-11-methionine. Ann Nucl Med. 17(1):47–51.Google Scholar
  95. 95.
    Kanagawa Masaru M. Comparison of trans-1-amino-3-[18F]fluorocyclobutanecarboxylic acid (anti-[18F]FACBC) accumulation in lymph node prostate cancer metastasis and lymphadenitis in rats. Nucl Med Biol. 41(7):545–51.Google Scholar
  96. 96.
    Oka Shuntaro S. Differences in transport mechanisms of trans-1-amino-3-[18F]fluorocyclobutanecarboxylic acid in inflammation, prostate cancer, and glioma cells: comparison with L-[methyl-11C]methionine and 2-deoxy-2-[18F]fluoro-D-glucose. Mol Imag Biol. 16(3):322–9.Google Scholar
  97. 97.
    Qu W, Oya S, Lieberman BP, Ploessl K, Wang L, Wise DR, et al. Preparation and characterization of L-[5-11C]-glutamine for metabolic imaging of tumors. J Nucl Med. 2012;53(1):98–105.PubMedCrossRefGoogle Scholar
  98. 98.
    Qu W, Zha Z, Lieberman BP, Mancuso A, Stetz M, Rizzi R, et al. Facile synthesis [5-(13)C-4-(2)H(2)]-L-glutamine for hyperpolarized MRS imaging of cancer cell metabolism. Acad Radiol. 2011;18(8):932–9.PubMedCrossRefGoogle Scholar
  99. 99.
    Kielland A, Blom T, Nandakumar KS, Holmdahl R, Blomhoff R, Carlsen H. In vivo imaging of reactive oxygen and nitrogen species in inflammation using the luminescent probe L-012. Free Radic Biol Med. 2009;47(6):760–6.PubMedCrossRefGoogle Scholar
  100. 100.
    Imada I, Sato EF, Miyamoto M, Ichimori Y, Minamiyama Y, Konaka R, et al. Analysis of reactive oxygen species generated by neutrophils using a chemiluminescence probe L-012. Anal Biochem. 1999;271(1):53–8.PubMedCrossRefGoogle Scholar
  101. 101.
    Daiber A, August M, Baldus S, Wendt M, Oelze M, Sydow K, et al. Measurement of NAD(P)H oxidase-derived superoxide with the luminol analogue L-012. Free Radic Biol Med. 2004;36(1):101–11.PubMedCrossRefGoogle Scholar
  102. 102.
    Breckwoldt Michael OM. Tracking the inflammatory response in stroke in vivo by sensing the enzyme myeloperoxidase. Proc Natl Acad Sci. 2008;105(47):18584–9.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    McCarthy TJ, Sheriff AU, Graneto MJ, Talley JJ, Welch MJ. Radiosynthesis, in vitro validation, and in vivo evaluation of 18F-labeled COX-1 and COX-2 inhibitors. J Nucl Med. 2002;43(1):117–24.PubMedGoogle Scholar
  104. 104.
    de Vries EF, Doorduin J, Dierckx RA, van Waarde A. Evaluation of [(11)C]rofecoxib as PET tracer for cyclooxygenase 2 overexpression in rat models of inflammation. Nucl Med Biol. 2008;35(1):35–42.PubMedCrossRefGoogle Scholar
  105. 105.
    Gao M, Wang M, Miller KD, Zheng QH. Synthesis and preliminary in vitro biological evaluation of new carbon-11-labeled celecoxib derivatives as candidate PET tracers for imaging of COX-2 expression in cancer. Eur J Med Chem. 2011;46(9):4760–7.PubMedCrossRefGoogle Scholar
  106. 106.
    Kossodo S, Zhang J, Groves K, Cuneo GJ, Handy E, Morin J, et al. Noninvasive in vivo quantification of neutrophil elastase activity in acute experimental mouse lung injury. Int J Mol Imaging. 2011;2011:581406.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Chen J, Tung CH, Allport JR, Chen S, Weissleder R, Huang PL. Near-infrared fluorescent imaging of matrix metalloproteinase activity after myocardial infarction. Circulation. 2005;111(14):1800–5.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    van der Graaf Marinette M. In vivo magnetic resonance spectroscopy: basic methodology and clinical applications. Eur Biophys J. 39(4):527–40.Google Scholar
  109. 109.
    Kang JJ. Application of metabolomics in autoimmune diseases: insight into biomarkers and pathology. J Neuroimmunol. 2015;279:25–32.PubMedCrossRefGoogle Scholar
  110. 110.
    Kidd BA, Wroblewska A, Boland MR, Agudo J, Merad M, Tatonetti NP, et al. Mapping the effects of drugs on the immune system. Nat Biotechnol. 2016;34(1):47–54.PubMedCrossRefGoogle Scholar
  111. 111.
    Burel JG, Apte SH, Doolan DL. Systems approaches towards molecular profiling of human immunity. Trends Immunol. 2016;37(1):53–67.PubMedCrossRefGoogle Scholar
  112. 112.
    Jha AK, Huang SC, Sergushichev A, Lampropoulou V, Ivanova Y, Loginicheva E, et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity. 2015;42(3):419–30.PubMedCrossRefGoogle Scholar
  113. 113.
    Xue J, Schmidt SV, Sander J, Draffehn A, Krebs W, Quester I, et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity. 2014;40(2):274–88.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5:4006.PubMedPubMedCentralGoogle Scholar
  115. 115.
    Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures. They Are Data Radiology. 2016;278(2):563–77.PubMedGoogle Scholar
  116. 116.
    Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48(4):441–6.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Mantovani A, Vecchi A, Allavena P. Pharmacological modulation of monocytes and macrophages. Curr Opin Pharmacol. 2014;17:38–44.PubMedCrossRefGoogle Scholar
  118. 118.
    O'Sullivan D, Pearce EL. Targeting T cell metabolism for therapy. Trends Immunol. 2015;36(2):71–80.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Colombo Serra S, Karlsson M, Giovenzana GB, Cavallotti C, Tedoldi F, Aime S. Hyperpolarized (13) C-labelled anhydrides as DNP precursors of metabolic MRI agents. Contrast Media Mol Imaging. 2012;7(5):469–77.PubMedCrossRefGoogle Scholar
  120. 120.
    Viale A, Reineri F, Dastru W, Aime S. Hyperpolarized (13)C-pyruvate magnetic resonance imaging in cancer diagnostics. Expert Opin Med Diagn. 2012;6(4):335–45.PubMedCrossRefGoogle Scholar
  121. 121.
    Glaudemans Andor WJMA. Pitfalls and limitations of radionuclide and hybrid imaging in infection and inflammation. Semin Nucl Med. 2015;45(6):500–12.PubMedCrossRefGoogle Scholar
  122. 122.
    Divine MR, Katiyar P, Kohlhofer U, Quintanilla-Martinez L, Pichler BJ, Disselhorst JA. A population-based Gaussian mixture model incorporating 18F-FDG PET and diffusion-weighted MRI quantifies tumor tissue classes. J Nucl Med. 2016;57(3):473–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Carmen Paus
    • 1
  • Derk Draper
    • 1
  • Mangala Srinivas
    • 1
  • Erik H. J. G. Aarntzen
    • 2
    Email author
  1. 1.Department of Tumor ImmunologyRadboud University Medical CentreNijmegenThe Netherlands
  2. 2.Department of RadiologyRadboud University Medical CentreNijmegenThe Netherlands

Personalised recommendations