Advertisement

Cancer Metabolism

  • Daniel R. Wahl
  • Sriram VennetiEmail author
Chapter

Abstract

Altered cellular metabolism is one of the hallmarks of cancers. Otto Warburg, a German biochemist, observed that cancer cells take up and metabolized large amounts of glucose and ferment it to lactate even in the presence of oxygen. This unexpected observation that cancer cells convert glucose to lactate even in aerobic conditions led Warburg to hypothesize that cancer cells have defective mitochondria. We now know that mitochondria are not defective in cancer cells but that this process, called the Warburg effect, represents a form of metabolic adaptation in cancer cells.

References

  1. 1.
    Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029–33.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Ward PS, Thompson CB. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell. 2012;21:297–308.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Kim JW, Tchernyshyov I, Semenza GL, Dang CV. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006;3:177–85.PubMedCrossRefGoogle Scholar
  4. 4.
    Baumann F, et al. Lactate promotes glioma migration by TGF-beta2-dependent regulation of matrix metalloproteinase-2. Neuro-Oncology. 2009;11:368–80.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Colen CB, et al. Metabolic targeting of lactate efflux by malignant glioma inhibits invasiveness and induces necrosis: an in vivo study. Neoplasia. 2011;13:620–32.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Crane CA, et al. Immune evasion mediated by tumor-derived lactate dehydrogenase induction of NKG2D ligands on myeloid cells in glioblastoma patients. Proc Natl Acad Sci U S A. 2014;111:12823–8.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Marin-Valencia I, et al. Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo. Cell Metab. 2012;15:827–37.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Hensley CT, et al. Metabolic heterogeneity in human lung tumors. Cell. 2016;164:681–94.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Wolf A, Agnihotri S, Munoz D, Guha A. Developmental profile and regulation of the glycolytic enzyme hexokinase 2 in normal brain and glioblastoma multiforme. Neurobiol Dis. 2011;44:84–91.PubMedCrossRefGoogle Scholar
  10. 10.
    Patra KC, et al. Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. Cancer Cell. 2013;24:213–28.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Rempel A, Mathupala SP, Griffin CA, Hawkins AL, Pedersen PL. Glucose catabolism in cancer cells: amplification of the gene encoding type II hexokinase. Cancer Res. 1996;56:2468–71.PubMedGoogle Scholar
  12. 12.
    Wolf A, et al. Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. J Exp Med. 2011;208:313–26.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Palmieri D, et al. Analyses of resected human brain metastases of breast cancer reveal the association between up-regulation of hexokinase 2 and poor prognosis. Mol Cancer Res. 2009;7:1438–45.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Kelloff GJ. Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clin Cancer Res. 2005;11:2785–808.PubMedCrossRefGoogle Scholar
  15. 15.
    Wong N, Ojo D, Yan J, Tang D. PKM2 contributes to cancer metabolism. Cancer Lett. 2015;356:184–91.PubMedCrossRefGoogle Scholar
  16. 16.
    Noguchi T, Inoue H, Tanaka T. The M1- and M2-type isozymes of rat pyruvate kinase are produced from the same gene by alternative RNA splicing. J Biol Chem. 1986;261:13807–12.PubMedGoogle Scholar
  17. 17.
    Israelsen WJ, Vander Heiden MG. Pyruvate kinase: function, regulation and role in cancer. Semin Cell Dev Biol. 2015;43:43–51.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Taylor CB, Bailey E. Activation of liver pyruvate kinase by fructose 1,6-diphosphate. Biochem J. 1967; 102:32c–33c.Google Scholar
  19. 19.
    Chaneton B, et al. Serine is a natural ligand and allosteric activator of pyruvate kinase M2. Nature. 2012;491:458–62.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Israelsen WJ, et al. PKM2 isoform-specific deletion reveals a differential requirement for pyruvate kinase in tumor cells. Cell. 2013;155:397–409.PubMedCrossRefGoogle Scholar
  21. 21.
    Lunt SY, et al. Pyruvate kinase isoform expression alters nucleotide synthesis to impact cell proliferation. Mol Cell. 2015;57:95–107.PubMedCrossRefGoogle Scholar
  22. 22.
    Commisso C, et al. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature. 2013;497:633–7.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    DeBerardinis RJ, Cheng T. Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene. 2010;29:313–24.PubMedCrossRefGoogle Scholar
  24. 24.
    Vander Heiden MG, et al. Metabolic pathway alterations that support cell proliferation. Cold Spring Harb Symp Quant Biol. 2011;76:325–34.PubMedCrossRefGoogle Scholar
  25. 25.
    DeBerardinis RJ, et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci U S A. 2007;104:19345–50.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Wise DR, Thompson CB. Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci. 2010;35:427–33.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Daye D, Wellen KE. Metabolic reprogramming in cancer: unraveling the role of glutamine in tumorigenesis. Semin Cell Dev Biol. 2012.Google Scholar
  28. 28.
    Venneti S. et al. Glutamine-based PET imaging facilitates enhanced metabolic evaluation of gliomas in vivo. Sci Transl Med. 2015; 7:274ra17.Google Scholar
  29. 29.
    DeNicola GM, et al. NRF2 regulates serine biosynthesis in non-small cell lung cancer. Nat Genet. 2015;47:1475–81.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Locasale JW. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev Cancer. 2013;13:572–83.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Schirch V, Szebenyi DM. Serine hydroxymethyltransferase revisited. Curr Opin Chem Biol. 2005;9:482–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Pai YJ, et al. Glycine decarboxylase deficiency causes neural tube defects and features of non-ketotic hyperglycinemia in mice. Nat Commun. 2015;6:6388.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Amelio I, Cutruzzolá F, Antonov A, Agostini M, Melino G. Serine and glycine metabolism in cancer. Trends Biochem Sci. 2014;39:191–8.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Wang J, et al. Dependence of mouse embryonic stem cells on threonine catabolism. Science. 2009;325:435–9.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Lane AN, Fan TW-M. Regulation of mammalian nucleotide metabolism and biosynthesis. Nucleic Acids Res. 2015.Google Scholar
  36. 36.
    Zatz M, Dudley PA, Kloog Y, Markey SP. Nonpolar lipid methylation. Biosynthesis of fatty acid methyl esters by rat lung membranes using S-adenosylmethionine. J Biol Chem. 1981;256:10028–32.PubMedGoogle Scholar
  37. 37.
    Hickman MJ, et al. Coordinated regulation of sulfur and phospholipid metabolism reflects the importance of methylation in the growth of yeast. Mol Biol Cell. 2011;22:4192–204.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Fan J, et al. Quantitative flux analysis reveals folate-dependent NADPH production. Nature. 2014;510:298–302.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Yang W, et al. PKM2 phosphorylates histone H3 and promotes Gene transcription and tumorigenesis. Cell. 2012;150:685–96.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Katada S, Imhof A, Sassone-Corsi P. Connecting threads: epigenetics and metabolism. Cell. 2012;148:24–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Teperino R, Schoonjans K, Auwerx J. Histone methyl transferases and demethylases; can they link metabolism and transcription? Cell Metab. 2010;12:321–7.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Snell K. Enzymes of serine metabolism in normal, developing and neoplastic rat tissues. Adv Enzym Regul. 1984;22:325–400.CrossRefGoogle Scholar
  43. 43.
    Locasale JW, et al. Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat Genet. 2011;43:869–74.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Possemato R, et al. Functional genomics reveals serine synthesis is essential in PHGDH-amplified breast cancer. Nature. 2011;476:346–50.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Christofk HR, et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature. 2008;452:230–3.PubMedCrossRefGoogle Scholar
  46. 46.
    Jain M, et al. Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science. 2012;336:1040–4.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Zhang WC, et al. Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis. Cell. 2012;148:259–72.PubMedCrossRefGoogle Scholar
  48. 48.
    Rahman L, et al. Thymidylate synthase as an oncogene: a novel role for an essential DNA synthesis enzyme. Cancer Cell. 2004;5:341–51.PubMedCrossRefGoogle Scholar
  49. 49.
    Xu X, et al. Broad overexpression of ribonucleotide reductase genes in mice specifically induces lung neoplasms. Cancer Res. 2008;68:2652–60.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Bester AC, et al. Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell. 2011;145:435–46.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Brennan CW, et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155:462–77.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Kohn AD, Summers SA, Birnbaum MJ, Roth RA. Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J Biol Chem. 1996;271:31372–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Deprez J, Vertommen D, Alessi DR, Hue L, Rider MH. Phosphorylation and activation of heart 6-phosphofructo-2-kinase by protein kinase B and other protein kinases of the insulin signaling cascades. J Biol Chem. 1997;272:17269–75.PubMedCrossRefGoogle Scholar
  54. 54.
    Gottlob K, et al. Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev. 2001;15:1406–18.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Rosario FJ, Kanai Y, Powell TL, Jansson T. Mammalian target of rapamycin signalling modulates amino acid uptake by regulating transporter cell surface abundance in primary human trophoblast cells. J Physiol. 2013;591:609–25.PubMedCrossRefGoogle Scholar
  56. 56.
    Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149:274–93.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Ma XM, Blenis J. Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol. 2009;10:307–18.PubMedCrossRefGoogle Scholar
  58. 58.
    Kim YC, Guan KL. mTOR: a pharmacologic target for autophagy regulation. J Clin Invest. 2015;125:25–32.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Babic I, et al. EGFR mutation-induced alternative splicing of max contributes to growth of glycolytic tumors in brain cancer. Cell Metab. 2013;17:1000–8.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Csibi A, et al. The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4. Cell. 2013;153:840–54.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 2011;12:21–35.PubMedCrossRefGoogle Scholar
  62. 62.
    Huh TL, Kim YO, Oh IU. Song, B.J. & Inazawa, J. Assignment of the human mitochondrial NAD+ −specific isocitrate dehydrogenase alpha subunit (IDH3A) gene to 15q25.1-->q25.2by in situ hybridization. Genomics. 1996;32:295–6.PubMedCrossRefGoogle Scholar
  63. 63.
    Losman J-A, et al. (R)-2-Hydroxyglutarate is sufficient to promote Leukemogenesis and its effects are reversible. Science. 2013;339:1621–5.PubMedCrossRefGoogle Scholar
  64. 64.
    Soundar S, Park JH, Huh TL, Colman RF. Evaluation by mutagenesis of the importance of 3 arginines in alpha, beta, and gamma subunits of human NAD-dependent isocitrate dehydrogenase. J Biol Chem. 2003;278:52146–53.PubMedCrossRefGoogle Scholar
  65. 65.
    Cohen PF, Colman RF. Diphosphopyridine nucleotide dependent isocitrate dehydrogenase from pig heart. Characterization of the active substrate and modes of regulation. Biochemistry. 1972;11:1501–8.PubMedCrossRefGoogle Scholar
  66. 66.
    Denton RM, Richards DA, Chin JG. Calcium ions and the regulation of NAD+−linked isocitrate dehydrogenase from the mitochondria of rat heart and other tissues. Biochem J. 1978;176:899–906.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Shechter I, Dai P, Huo L, Guan G. IDH1 gene transcription is sterol regulated and activated by SREBP-1a and SREBP-2 in human hepatoma HepG2 cells: evidence that IDH1 may regulate lipogenesis in hepatic cells. J Lipid Res. 2003;44:2169–80.PubMedCrossRefGoogle Scholar
  68. 68.
    Liu W, Capuco AV, Romagnolo DF. Expression of cytosolic NADP+−dependent Isocitrate dehydrogenase in bovine mammary epithelium: modulation by regulators of differentiation and metabolic effectors. Exp Biol Med. 2006;231:599–610.CrossRefGoogle Scholar
  69. 69.
    Jo SH, et al. Cellular defense against UVB-induced phototoxicity by cytosolic NADP(+)-dependent isocitrate dehydrogenase. Biochem Biophys Res Commun. 2002;292:542–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Yu W, Dittenhafer-Reed KE, Denu JM. SIRT3 protein deacetylates isocitrate dehydrogenase 2 (IDH2) and regulates mitochondrial redox status. J Biol Chem. 2012;287:14078–86.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Lee JH, Kim SY, Kil IS, Park JW. Regulation of ionizing radiation-induced apoptosis by mitochondrial NADP+−dependent isocitrate dehydrogenase. J Biol Chem. 2007;282:13385–94.PubMedCrossRefGoogle Scholar
  72. 72.
    Metallo CM, et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature. 2012;481:380–4.Google Scholar
  73. 73.
    Filipp FV, Scott DA, Ronai ZA, Osterman AL, Smith JW. Reverse TCA cycle flux through isocitrate dehydrogenases 1 and 2 is required for lipogenesis in hypoxic melanoma cells. Pigment Cell Melanoma Res. 2012;25:375–83.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Parsons DW, et al. An integrated genomic analysis of human glioblastoma multiforme. Science. 2008;321:1807–12.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Balss J, et al. Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol. 2008;116:597–602.PubMedCrossRefGoogle Scholar
  76. 76.
    Bleeker FE, et al. IDH1 mutations at residue p.R132 (IDH1(R132)) occur frequently in high-grade gliomas but not in other solid tumors. Hum Mutat. 2009;30:7–11.PubMedCrossRefGoogle Scholar
  77. 77.
    Hartmann C, et al. Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol. 2009;118:469–74.PubMedCrossRefGoogle Scholar
  78. 78.
    Yan H, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009;360:765–73.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Byeon SJ, et al. Distinct genetic alterations in pediatric glioblastomas. Childs Nerv Syst. 2012;28:1025–32.PubMedCrossRefGoogle Scholar
  80. 80.
    Mardis ER, et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med. 2009;361:1058–66.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Thol F, et al. IDH1 mutations in patients with myelodysplastic syndromes are associated with an unfavorable prognosis. Haematologica. 2010;95:1668–74.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Borger DR, et al. Frequent mutation of isocitrate dehydrogenase (IDH)1 and IDH2 in cholangiocarcinoma identified through broad-based tumor genotyping. Oncologist. 2012;17:72–9.PubMedCrossRefGoogle Scholar
  83. 83.
    Wang P, et al. Mutations in isocitrate dehydrogenase 1 and 2 occur frequently in intrahepatic cholangiocarcinomas and share hypermethylation targets with glioblastomas. Oncogene. 2013;32:3091–100.PubMedCrossRefGoogle Scholar
  84. 84.
    Amary MF, et al. IDH1 and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondromas but not in other mesenchymal tumours. J Pathol. 2011;224:334–43.PubMedCrossRefGoogle Scholar
  85. 85.
    Marcucci G, et al. IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a cancer and leukemia group B study. J Clin Oncol. 2010;28:2348–55.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Abdel-Wahab O, Patel J, Levine RL. Clinical implications of novel mutations in epigenetic modifiers in AML. Hematol Oncol Clin North Am. 2011;25:1119–33.PubMedCrossRefGoogle Scholar
  87. 87.
    DiNardo, C. et al. Molecular Profiling and Relationship with Clinical Response in Patients with IDH1 Mutation-Positive Hematologic Malignancies Receiving AG-120, a First-in-Class Potent Inhibitor of Mutant IDH1, in Addition to Data from the Completed Dose Escalation Portio…. Blood. 2015; 126:1306.Google Scholar
  88. 88.
    Patnaik MM, et al. Differential prognostic effect of IDH1 versus IDH2 mutations in myelodysplastic syndromes: a Mayo Clinic study of 277 patients. Leukemia. 2012;26:101–5.PubMedCrossRefGoogle Scholar
  89. 89.
    Goyal L, et al. Prognosis and Clinicopathologic features of patients with advanced stage Isocitrate dehydrogenase (IDH) mutant and IDH wild-type intrahepatic Cholangiocarcinoma. Oncologist. 2015;20:1019–27.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Churi CR, et al. Mutation profiling in cholangiocarcinoma: prognostic and therapeutic implications. PLoS One. 2014;9:e115383.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Zhu AX, et al. Genomic profiling of intrahepatic cholangiocarcinoma: refining prognosis and identifying therapeutic targets. Ann Surg Oncol. 2014;21:3827–34.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Dang L, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009;462:739–44.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Ward PS, et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell. 2010;17:225–34.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Xu X, et al. Structures of human cytosolic NADP-dependent isocitrate dehydrogenase reveal a novel self-regulatory mechanism of activity. J Biol Chem. 2004;279:33946–57.PubMedCrossRefGoogle Scholar
  95. 95.
    Dang L, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2010;465:966.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Gross S, et al. Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations. J Exp Med. 2010;207:339–44.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Watanabe T, Nobusawa S, Kleihues P, Ohgaki H. IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. Am J Pathol. 2009;174:1149–53.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Lai A, et al. Evidence for sequenced molecular evolution of IDH1 mutant glioblastoma from a distinct cell of origin. J Clin Oncol. 2011;29:4482–90.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Lu C, et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature. 2012;483:474–8.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Lu C, et al. Induction of sarcomas by mutant IDH2. Genes Dev. 2013;27:1986–98.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Koivunen P, et al. Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation. Nature. 2012;483:484–8.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Turcan S, et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature. 2012;483:479–83.Google Scholar
  103. 103.
    Saha SK, et al. Mutant IDH inhibits HNF-4alpha to block hepatocyte differentiation and promote biliary cancer. Nature. 2014;513:110–4.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Sasaki M, et al. D-2-hydroxyglutarate produced by mutant IDH1 perturbs collagen maturation and basement membrane function. Genes Dev. 2012;26:2038–49.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Network TCGAR. Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med. 2015;372:2481–98.CrossRefGoogle Scholar
  106. 106.
    Eckel-Passow JE, et al. Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med. 2015;372:2499–508.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Losman J-A, Kaelin WG. What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer. Genes Dev. 2013;27:836–52.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Noushmehr H, et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell. 2010;17:510–22.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Verhaak RG, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17:98–110.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Duncan CG, et al. A heterozygous IDH1R132H/WT mutation induces genome-wide alterations in DNA methylation. Genome Res. 2012.Google Scholar
  111. 111.
    Figueroa ME, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell. 2010;18:553–67.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Xu W, et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell. 2011;19:17–30.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Kim YH, et al. TET2 promoter methylation in low-grade diffuse gliomas lacking IDH1/2 mutations. J Clin Pathol. 2011;64:850–2.PubMedCrossRefGoogle Scholar
  114. 114.
    Klose RJ, Kallin EM, Zhang Y. JmjC-domain-containing proteins and histone demethylation. Nat Rev Genet. 2006;7:715–27.PubMedCrossRefGoogle Scholar
  115. 115.
    Chen Z, et al. Structural insights into histone demethylation by JMJD2 family members. Cell. 2006;125:691–702.PubMedCrossRefGoogle Scholar
  116. 116.
    Hu Z, et al. A novel nuclear protein, 5qNCA (LOC51780) is a candidate for the myeloid leukemia tumor suppressor gene on chromosome 5 band q31. Oncogene. 2001;20:6946–54.PubMedCrossRefGoogle Scholar
  117. 117.
    Lu C, Thompson CB. Metabolic regulation of epigenetics. Cell Metab. 2012;16:9–17.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Venneti S, et al. Histone 3 lysine 9 trimethylation is differentially associated with isocitrate dehydrogenase mutations in oligodendrogliomas and high-grade astrocytomas. J Neuropathol Exp Neurol. 2013;72:298–306.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Chowdhury R, et al. The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases. EMBO Rep. 2011;12:463–9.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Zhao S, et al. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1α. Science. 2009;324:261–5.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Williams SC, et al. R132H-mutation of isocitrate dehydrogenase-1 is not sufficient for HIF-1alpha upregulation in adult glioma. Acta Neuropathol. 2011;121:279–81.PubMedCrossRefGoogle Scholar
  122. 122.
    Fu X, et al. 2-Hydroxyglutarate Inhibits ATP Synthase and mTOR Signaling. Cell Metab. 2015.Google Scholar
  123. 123.
    Chin RM, et al. The metabolite alpha-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR. Nature. 2014;510:397–401.PubMedPubMedCentralGoogle Scholar
  124. 124.
    Stine ZE, Walton ZE, Altman BJ, Hsieh AL, Dang CV, MYC, Metabolism, and cancer. Cancer Discov. 2015.Google Scholar
  125. 125.
    Duesberg PH, Vogt PK. Avian acute leukemia viruses MC29 and MH2 share specific RNA sequences: evidence for a second class of transforming genes. Proc Natl Acad Sci U S A. 1979;76:1633–7.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Hu SS, Lai MM, Vogt PK. Genome of avian myelocytomatosis virus MC29: analysis by heteroduplex mapping. Proc Natl Acad Sci U S A. 1979;76:1265–8.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Beroukhim R, et al. The landscape of somatic copy-number alteration across human cancers. Nature. 2010;463:899–905.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Dean M, et al. Regulation of c-myc transcription and mRNA abundance by serum growth factors and cell contact. J Biol Chem. 1986;261:9161–6.PubMedGoogle Scholar
  129. 129.
    Zeller KI, et al. Global mapping of c-Myc binding sites and target gene networks in human B cells. Proc Natl Acad Sci U S A. 2006;103:17834–9.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Morrish F, Isern N, Sadilek M. Jeffrey, M. & Hockenbery, D.M. C-Myc activates multiple metabolic networks to generate substrates for cell cycle entry. Oncogene. 2009;28:2485–91.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Kim JW, et al. Evaluation of myc E-box phylogenetic footprints in glycolytic genes by chromatin immunoprecipitation assays. Mol Cell Biol. 2004;24:5923–36.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Shim H, et al. C-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc Natl Acad Sci U S A. 1997;94:6658–63.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Osthus RC, et al. Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J Biol Chem. 2000;275:21797–800.PubMedCrossRefGoogle Scholar
  134. 134.
    Gao P, et al. C-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature. 2009;458:762–5.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Morrish F, et al. Myc-dependent mitochondrial generation of acetyl-CoA contributes to fatty acid biosynthesis and histone acetylation during cell cycle entry. J Biol Chem. 2010;285:36267–74.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Edmunds LR, et al. C-Myc programs fatty acid metabolism and dictates acetyl-CoA abundance and fate. J Biol Chem. 2014;289:25382–92.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Li F, et al. Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis. Mol Cell Biol. 2005;25:6225–34.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Zhang H, et al. HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell. 2007;11:407–20.PubMedCrossRefGoogle Scholar
  139. 139.
    Kim J, Lee JH, Iyer VR. Global identification of Myc target genes reveals its direct role in mitochondrial biogenesis and its E-box usage in vivo. PLoS One. 2008;3:e1798.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Wonsey DR, Zeller KI, Dang CV. The c-Myc target gene PRDX3 is required for mitochondrial homeostasis and neoplastic transformation. Proc Natl Acad Sci U S A. 2002;99:6649–54.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Palaskas N, et al. 18F-fluorodeoxy-glucose positron emission tomography marks MYC-overexpressing human basal-like breast cancers. Cancer Res. 2011;71:5164–74.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Alles MC, et al. Meta-analysis and gene set enrichment relative to er status reveal elevated activity of MYC and E2F in the "basal" breast cancer subgroup. PLoS One. 2009;4:e4710.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Chandriani S, et al. A core MYC gene expression signature is prominent in basal-like breast cancer but only partially overlaps the core serum response. PLoS One. 2009;4:e6693.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Shen L, et al. Metabolic reprogramming in triple-negative breast cancer through Myc suppression of TXNIP. Proc Natl Acad Sci U S A. 2015;112:5425–30.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Timmerman, Luika A, et al. Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target. Cancer Cell. 2013; 24:450–65.Google Scholar
  146. 146.
    Yuneva MO, et al. The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab. 2012;15:157–70.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Gnarra JR, et al. Mutations of the VHL tumour suppressor gene in renal carcinoma. Nat Genet. 1994;7:85–90.PubMedCrossRefGoogle Scholar
  148. 148.
    Williamson SR, et al. Succinate dehydrogenase-deficient renal cell carcinoma: detailed characterization of 11 tumors defining a unique subtype of renal cell carcinoma. Mod Pathol. 2015;28:80–94.PubMedCrossRefGoogle Scholar
  149. 149.
    Linehan WM, Rouault TA. Molecular pathways: Fumarate hydratase-deficient kidney cancer-targeting the Warburg effect in cancer. Clin Cancer Res. 2013;19:3345–52.Google Scholar
  150. 150.
    Lussey-Lepoutre C, et al. Loss of succinate dehydrogenase activity results in dependency on pyruvate carboxylation for cellular anabolism. Nat Commun. 2015;6:8784.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Sullivan LB, et al. The proto-oncometabolite fumarate binds glutathione to amplify ROS-dependent signaling. Mol Cell. 2013;51:236–48.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Bertout JA, Patel SA, Simon MC. The impact of O2 availability on human cancer. Nat Rev Cancer. 2008;8:967–75.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Keith B, Johnson RS, Simon MC. HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer. 2012;12:9–22.Google Scholar
  154. 154.
    Semenza GL, Roth PH, Fang HM, Wang GL. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem. 1994;269:23757–63.PubMedGoogle Scholar
  155. 155.
    Mathupala SP, Rempel A, Pedersen PL. Glucose catabolism in cancer cells: identification and characterization of a marked activation response of the type II hexokinase gene to hypoxic conditions. J Biol Chem. 2001;276:43407–12.PubMedCrossRefGoogle Scholar
  156. 156.
    Luo W, et al. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell. 2011;145:732–44.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Lum JJ, et al. The transcription factor HIF-1alpha plays a critical role in the growth factor-dependent regulation of both aerobic and anaerobic glycolysis. Genes Dev. 2007;21:1037–49.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Metallo CM, et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature. 2011.Google Scholar
  159. 159.
    Wise DR, et al. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cell growth and viability. Proc Nat Acad Sci U S A. 2011.Google Scholar
  160. 160.
    Mullen AR, et al. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature. 2011.Google Scholar
  161. 161.
    Le A, et al. Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab. 2012;15:110–21.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Gameiro PA, et al. In vivo HIF-mediated reductive carboxylation is regulated by citrate levels and sensitizes VHL-deficient cells to glutamine deprivation. Cell Metab. 2013;17:372–85.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Galluzzi L, Kepp O, Vander Heiden MG, Kroemer G. Metabolic targets for cancer therapy. Nat Rev Drug Discov. 2013;12:829–46.PubMedCrossRefGoogle Scholar
  164. 164.
    Vander Heiden MG. Targeting cancer metabolism: a therapeutic window opens. Nat Rev Drug Discov. 2011;10:671–84.PubMedCrossRefGoogle Scholar
  165. 165.
    Chabner BA, Roberts TG Jr. Timeline: chemotherapy and the war on cancer. Nat Rev Cancer. 2005;5:65–72.PubMedCrossRefGoogle Scholar
  166. 166.
    Farber S, Diamond LK. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid. N Engl J Med. 1948;238:787–93.PubMedCrossRefGoogle Scholar
  167. 167.
    Joerger M, Omlin A, Cerny T, Fruh M. The role of pemetrexed in advanced non small-cell lung cancer: special focus on pharmacology and mechanism of action. Curr Drug Targets. 2010;11:37–47.PubMedCrossRefGoogle Scholar
  168. 168.
    Shewach DS, Lawrence TS. Antimetabolite radiosensitizers. J Clin Oncol. 2007;25:4043–50.PubMedCrossRefGoogle Scholar
  169. 169.
    Kidd JG. Regression of transplanted lymphomas induced in vivo by means of normal guinea pig serum. I. Course of transplanted cancers of various kinds in mice and rats given guinea pig serum, horse serum, or rabbit serum. J Exp Med. 1953;98:565–82.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Muller HJ, Boos J. Use of L-asparaginase in childhood ALL. Crit Rev Oncol Hematol. 1998;28:97–113.PubMedCrossRefGoogle Scholar
  171. 171.
    Broome JD. L-Asparaginase: discovery and development as a tumor-inhibitory agent. Cancer Treat Rep. 1981;65:111–4.PubMedGoogle Scholar
  172. 172.
    Fu CH, Sakamoto KM. PEG-asparaginase. Expert Opin Pharmacother. 2007;8:1977–84.PubMedCrossRefGoogle Scholar
  173. 173.
    Earl M. Incidence and management of asparaginase-associated adverse events in patients with acute lymphoblastic leukemia. Clin Adv Hematol Oncol. 2009;7:600–6.PubMedGoogle Scholar
  174. 174.
    Wong A, Soo RA, Yong WP, Innocenti F. Clinical pharmacology and pharmacogenetics of gemcitabine. Drug Metab Rev. 2009;41:77–88.PubMedCrossRefGoogle Scholar
  175. 175.
    Cohade C, Wahl RL. Applications of positron emission tomography/computed tomography image fusion in clinical positron emission tomography-clinical use, interpretation methods, diagnostic improvements. Semin Nucl Med. 2003;33:228–37.PubMedCrossRefGoogle Scholar
  176. 176.
    Kaplan O, et al. Effects of 2-deoxyglucose on drug-sensitive and drug-resistant human breast cancer cells: toxicity and magnetic resonance spectroscopy studies of metabolism. Cancer Res. 1990;50:544–51.PubMedGoogle Scholar
  177. 177.
    Dwarakanath BS, et al. Clinical studies for improving radiotherapy with 2-deoxy-D-glucose: present status and future prospects. J Cancer Res Ther. 2009;5(Suppl 1):S21–6.PubMedCrossRefGoogle Scholar
  178. 178.
    Landau BR, Laszlo J, Stengle J, Burk D. Certain metabolic and pharmacologic effects in cancer patients given infusions of 2-deoxy-D-glucose. J Natl Cancer Inst. 1958;21:485–94.PubMedGoogle Scholar
  179. 179.
    Mohanti BK, et al. Improving cancer radiotherapy with 2-deoxy-D-glucose: phase I/II clinical trials on human cerebral gliomas. Int J Radiat Oncol Biol Phys. 1996;35:103–11.PubMedCrossRefGoogle Scholar
  180. 180.
    Singh D, et al. Optimizing cancer radiotherapy with 2-deoxy-d-glucose dose escalation studies in patients with glioblastoma multiforme. Strahlenther Onkol. 2005;181:507–14.PubMedCrossRefGoogle Scholar
  181. 181.
    Allen BG, et al. Ketogenic diets as an adjuvant cancer therapy: history and potential mechanism. Redox Biol. 2014;2:963–70.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Valayannopoulos V, et al. Successful treatment of severe cardiomyopathy in glycogen storage disease type III with D,L-3-hydroxybutyrate, ketogenic and high-protein diet. Pediatr Res. 2011;70:638–41.PubMedCrossRefGoogle Scholar
  183. 183.
    Neal EG, et al. The ketogenic diet for the treatment of childhood epilepsy: a randomised controlled trial. Lancet Neurol. 2008;7:500–6.PubMedCrossRefGoogle Scholar
  184. 184.
    Allen BG, et al. Ketogenic diets enhance oxidative stress and radio-chemo-therapy responses in lung cancer xenografts. Clin Cancer Res. 2013;19:3905–13.PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Nebeling LC, Miraldi F, Shurin SB, Lerner E. Effects of a ketogenic diet on tumor metabolism and nutritional status in pediatric oncology patients: two case reports. J Am Coll Nutr. 1995;14:202–8.PubMedCrossRefGoogle Scholar
  186. 186.
    Zuccoli G, et al. Metabolic management of glioblastoma multiforme using standard therapy together with a restricted ketogenic diet: case report. Nutr Metab (Lond). 2010;7:33.CrossRefGoogle Scholar
  187. 187.
    Schmidt M, Pfetzer N, Schwab M, Strauss I, Kammerer U. Effects of a ketogenic diet on the quality of life in 16 patients with advanced cancer: a pilot trial. Nutr Metab (Lond). 2011;8:54.CrossRefGoogle Scholar
  188. 188.
    Gross MI, et al. Antitumor activity of the Glutaminase inhibitor CB-839 in triple-negative breast cancer. Mol Cancer Ther. 2014;13:890–901.PubMedCrossRefGoogle Scholar
  189. 189.
    Xiang Y, et al. Targeted inhibition of tumor-specific glutaminase diminishes cell-autonomous tumorigenesis. J Clin Invest. 2015;125:2293–306.PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Seltzer MJ, et al. Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1. Cancer Res. 2010;70:8981–7.PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Harding JJ, et al. ASCO Annual Meeting Proceedings 2512. 2015.Google Scholar
  192. 192.
    Vogl DT, et al. Blood (Amer Soc Hematology 2021 L ST NW, SUITE 900, WASHINGTON, DC 20036 USA, 2015).Google Scholar
  193. 193.
    Popovici-Muller J, et al. Discovery of the first potent inhibitors of mutant IDH1 that lower tumor 2-HG in vivo. ACS Med Chem Lett. 2012;3:850–5.PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Rohle D, et al. An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science. 2013;340:626–30.PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Chaturvedi A, et al. Mutant IDH1 promotes leukemogenesis in vivo and can be specifically targeted in human AML. Blood. 2013;122:2877–87.PubMedCrossRefGoogle Scholar
  196. 196.
    Wang F, et al. Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation. Science. 2013;340:622–6.PubMedCrossRefGoogle Scholar
  197. 197.
    Kernytsky A, et al. IDH2 mutation-induced histone and DNA hypermethylation is progressively reversed by small-molecule inhibition. Blood. 2015;125:296–303.PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Stein EM, et al. AG-221, an oral, selective, first-in-class, potent inhibitor of the IDH2 mutant metabolic enzyme, induces durable remissions in a phase I study in patients with IDH2 mutation positive advanced hematologic malignancies. Blood. 2014;124:115.Google Scholar
  199. 199.
    Burris H, et al. Abstract PL04-05: the first reported results of AG-120, a first-in-class, potent inhibitor of the IDH1 mutant protein, in a phase I study of patients with advanced IDH1-mutant solid tumors, including gliomas. Mol Cancer Ther. 2015;14:PL04-05.CrossRefGoogle Scholar
  200. 200.
    Michelakis ED, Webster L, Mackey JR. Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer. Br J Cancer. 2008;99:989–94.PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Kankotia S, Stacpoole PW. Dichloroacetate and cancer: new home for an orphan drug? Biochim Biophys Acta. 2014;1846:617–29.PubMedGoogle Scholar
  202. 202.
    Bonnet S, et al. A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell. 2007;11:37–51.PubMedCrossRefGoogle Scholar
  203. 203.
    Xie J, et al. Dichloroacetate shifts the metabolism from glycolysis to glucose oxidation and exhibits synergistic growth inhibition with cisplatin in HeLa cells. Int J Oncol. 2011;38:409–17.PubMedGoogle Scholar
  204. 204.
    Michelakis ED, et al. Metabolic modulation of glioblastoma with dichloroacetate. Sci Transl Med. 2010;2:31ra34.PubMedCrossRefGoogle Scholar
  205. 205.
    Lee B, Oh S-W, Myung S-K. Efficacy of vitamin C supplements in prevention of cancer: a meta-analysis of randomized controlled trials. Korean J Family Med. 2015;36:278–85.CrossRefGoogle Scholar
  206. 206.
    Coulter ID, et al. Antioxidants vitamin C and vitamin e for the prevention and treatment of cancer. J Gen Intern Med. 2006;21:735–44.PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Yun J, et al. Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH. Science. 2015;350:1391–6.PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Du J, et al. Pharmacological Ascorbate Radiosensitizes pancreatic cancer. Cancer Res. 2015;75:3314–26.PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    Blackhall F. O11.5Activity of the monocarboxylate transporter 1 inhibitor AZD3965 in small cell lung cancer. Annals of oncology 26. In: ii15; 2015.Google Scholar
  210. 210.
    Hong, Candice S, et al. MCT1 modulates cancer cell pyruvate export and growth of tumors that co-express MCT1 and MCT4. Cell Rep. 14:1590–601.Google Scholar
  211. 211.
    Bola BM, et al. Inhibition of monocarboxylate transporter-1 (MCT1) by AZD3965 enhances radiosensitivity by reducing lactate transport. Mol Cancer Ther. 2014;13:2805–16.PubMedPubMedCentralCrossRefGoogle Scholar
  212. 212.
    Brenner AJ, et al. ASCO Annual Meeting Proceedings TPS2615. 2015.Google Scholar
  213. 213.
    Stumvoll M, Nurjhan N, Perriello G, Dailey G, Gerich JE. Metabolic effects of metformin in non-insulin-dependent diabetes mellitus. N Engl J Med. 1995;333:550–4.PubMedCrossRefGoogle Scholar
  214. 214.
    Morales DR, Morris AD. Metformin in cancer treatment and prevention. Annu Rev Med. 2015;66:17–29.PubMedCrossRefGoogle Scholar
  215. 215.
    Evans JM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD. Metformin and reduced risk of cancer in diabetic patients. BMJ. 2005;330:1304–5.PubMedPubMedCentralCrossRefGoogle Scholar
  216. 216.
    Franciosi M, et al. Metformin therapy and risk of cancer in patients with type 2 diabetes: systematic review. PLoS One. 2013;8:e71583.PubMedPubMedCentralCrossRefGoogle Scholar
  217. 217.
    Thakkar B, Aronis KN, Vamvini MT, Shields K, Mantzoros CS. Metformin and sulfonylureas in relation to cancer risk in type II diabetes patients: a meta-analysis using primary data of published studies. Metabolism. 2013;62:922–34.PubMedCrossRefGoogle Scholar
  218. 218.
    Home PD, et al. Experience of malignancies with oral glucose-lowering drugs in the randomised controlled ADOPT (a diabetes outcome progression trial) and RECORD (rosiglitazone evaluated for cardiovascular outcomes and regulation of glycaemia in diabetes) clinical trials. Diabetologia. 2010;53:1838–45.PubMedPubMedCentralCrossRefGoogle Scholar
  219. 219.
    Rizos CV, Elisaf MS. Metformin and cancer. Eur J Pharmacol. 2013;705:96–108.PubMedCrossRefGoogle Scholar
  220. 220.
    Hadad S, et al. Evidence for biological effects of metformin in operable breast cancer: a pre-operative, window-of-opportunity, randomized trial. Breast Cancer Res Treat. 2011;128:783–94.PubMedCrossRefGoogle Scholar
  221. 221.
    Niraula S, et al. Metformin in early breast cancer: a prospective window of opportunity neoadjuvant study. Breast Cancer Res Treat. 2012;135:821–30.PubMedCrossRefGoogle Scholar
  222. 222.
    Bonanni B, et al. Dual effect of metformin on breast cancer proliferation in a randomized presurgical trial. J Clin Oncol. 2012;30:2593–600.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Radiation OncologyUniversity of Michigan Medical SchoolAnn ArborUSA
  2. 2.Department of PathologyUniversity of Michigan Medical SchoolAnn ArborUSA

Personalised recommendations