Advertisement

Introduction: MRI/MRS as Metabolic Imaging Tools

  • David WilsonEmail author
  • Michael Ohliger
Chapter

Abstract

Metabolic imaging using magnetic resonance has its roots in a relatively obscure technology, used by physicists in the late 1940s to study the nuclear magnetic moments of nuclei. This technique was nuclear magnetic resonance (NMR), based on the original observations of Bloch and Purcell in 1946 that nuclei with a given spin could be studied by applying an oscillating radiofrequency field, at a frequency corresponding to energy difference between nuclear orientations. When this so-called “resonance” frequency is applied to matter, the resulting emitted signal is the basis for NMR and magnetic resonance imaging (MRI). The discovery most relevant to metabolic imaging was that of chemical shift, described in several publications in 1949–1950, and the consequence of the subtle changes in local magnetic field, resulting from electric shell interactions. This remarkable finding is the fundamental principle of magnetic resonance spectroscopy (MRS), whereby nuclei can be identified reliably depending on their chemical structure, independent of magnetic field strength. Today in the clinic, several key metabolites present in the brain are easily identified using MRS techniques. Changes in the frequency-specific metabolic map or “spectrum” are used to diagnose disease and monitor the effects of medical treatments, in cancer and other illnesses.

References

  1. 1.
    Gibby WA. Basic principles of magnetic resonance imaging. Neurosurg Clin N Am. 2005;16:1–64. doi: 10.1016/j.nec.2004.08.017.CrossRefPubMedGoogle Scholar
  2. 2.
    Plewes DB, Kucharczyk W. Physics of MRI: a primer. J Magn Reson Imaging. 2012;35:1038–54. doi: 10.1002/jmri.23642.CrossRefPubMedGoogle Scholar
  3. 3.
    Pooley RA. AAPM/RSNA physics tutorial for residents: fundamental physics of MR imaging. Radiographics. 2005;25:1087–99. doi: 10.1148/rg.254055027.CrossRefPubMedGoogle Scholar
  4. 4.
    Perman WH, Balci NC, Akduman I. Review of magnetic resonance spectroscopy in the liver and the pancreas. Top Magn Reson Imaging. 2009;20:89–97. doi: 10.1097/RMR.0b013e3181c422f1.CrossRefPubMedGoogle Scholar
  5. 5.
    Bottomley PA, Foster TH, Argersinger RE, Pfeifer LM. A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1-100 MHz: dependence on tissue type, NMR frequency, temperature, species, excision, and age. Med Phys. 1984;11:425–48. doi: 10.1118/1.595535.CrossRefPubMedGoogle Scholar
  6. 6.
    Bitar R, et al. MR pulse sequences: what every radiologist wants to know but is afraid to ask. Radiographics. 2006;26:513–37. doi: 10.1148/rg.262055063.CrossRefPubMedGoogle Scholar
  7. 7.
    Gallagher TA, Nemeth AJ, Hacein-Bey L. An introduction to the Fourier transform: relationship to MRI. AJR Am J Roentgenol. 2008;190:1396–405. doi: 10.2214/AJR.07.2874.CrossRefPubMedGoogle Scholar
  8. 8.
    Skoch A, Jiru F, Bunke J. Spectroscopic imaging: basic principles. Eur J Radiol. 2008;67:230–9. doi: 10.1016/j.ejrad.2008.03.003.CrossRefPubMedGoogle Scholar
  9. 9.
    van der Graaf M. In vivo magnetic resonance spectroscopy: basic methodology and clinical applications. Eur Biophys J. 2010;39:527–40. doi: 10.1007/s00249-009-0517-y.CrossRefPubMedGoogle Scholar
  10. 10.
    Haase A, et al. MR imaging using stimulated echoes (STEAM). Radiology. 1986;160:787–90. doi: 10.1148/radiology.160.3.3737918.CrossRefPubMedGoogle Scholar
  11. 11.
    Moonen CT, et al. Comparison of single-shot localization methods (STEAM and PRESS) for in vivo proton NMR spectroscopy. NMR Biomed. 1989;2:201–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Keshari KR, Wilson DM. Chemistry and biochemistry of C-13 hyperpolarized magnetic resonance using dynamic nuclear polarization. Chem Soc Rev. 2014;43:1627–59.CrossRefPubMedGoogle Scholar
  13. 13.
    Mekle R, et al. MR spectroscopy of the human brain with enhanced signal intensity at ultrashort echo times on a clinical platform at 3T and 7T. Magn Reson Med. 2009;61:1279–85. doi: 10.1002/mrm.21961.CrossRefPubMedGoogle Scholar
  14. 14.
    Wilson DM, Kurhanewicz J. Hyperpolarized 13C MR for molecular imaging of prostate cancer. J Nucl Med. 2014;55:1567–72. doi: 10.2967/jnumed.114.141705.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Abragam A, Goldman M. Principles of dynamic nuclear-polarization. Rep Prog Phys. 1978;41:395–467.CrossRefGoogle Scholar
  16. 16.
    Ardenkjaer-Larsen JH, et al. Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR. Proc Natl Acad Sci U S A. 2003;100:10158–63. doi: 10.1073/pnas.1733835100.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Park I, et al. Hyperpolarized 13C magnetic resonance metabolic imaging: application to brain tumors. Neuro-Oncology. 2010;12:133–44. doi: 10.1093/neuonc/nop043.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Nelson SJ, et al. Metabolic imaging of patients with prostate cancer using hyperpolarized [1-(1)(3)C]pyruvate. Sci Transl Med. 2013; 5:198ra108, doi: 10.1126/scitranslmed.3006070
  19. 19.
    Ward KM, Aletras AH, Balaban RS. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J Magn Reson. 2000;143:79–87. doi: 10.1006/jmre.1999.1956.CrossRefPubMedGoogle Scholar
  20. 20.
    van Zijl PC, Yadav NN. Chemical exchange saturation transfer (CEST): what is in a name and what isn't? Magn Reson Med. 2011;65:927–48. doi: 10.1002/mrm.22761.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Walker-Samuel S, et al. In vivo imaging of glucose uptake and metabolism in tumors. Nat Med. 2013;19:1067–72. doi: 10.1038/nm.3252.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Woods M, et al. Synthesis, relaxometric and photophysical properties of a new pH-responsive MRI contrast agent: the effect of other ligating groups on dissociation of a p-nitrophenolic pendant arm. J Am Chem Soc. 2004;126:9248–56. doi: 10.1021/ja048299z.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Duimstra JA, Femia FJ, Meade TJ. A gadolinium chelate for detection of beta-glucuronidase: a self-immolative approach. J Am Chem Soc. 2005;127:12847–55. doi: 10.1021/ja042162r.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of RadiologyUniversity of California San FranciscoSan FranciscoUSA

Personalised recommendations