Overview of Positron-Emission Tomography Tracers for Metabolic Imaging

  • Ephraim Parent
  • Jonathan McConathyEmail author


Positron-emission tomography (PET) is a cross-sectional imaging technique that uses compounds labeled with positron-emitting radionuclides to measure the concentration and location of the radiolabeled compounds over time. PET has been used for a broad range of biomedical research and is used routinely in clinical patient care for oncologic, neurologic, and cardiac applications. PET has several properties that make this technique particularly well-suited for metabolic imaging as well as some important limitations. This chapter discusses key principles and applications of PET tracers for metabolic imaging in mammalian systems. Many of the first PET tracers developed for metabolic imaging were radiolabeled forms of naturally occurring products such as glucose and amino acids [1, 2]. Due to the wide range of metabolic PET tracers that have been developed, it is not possible to comprehensively cover this field in a single chapter. We focus primarily on small molecule PET tracers that participate in metabolic pathways and/or serve as markers for the activity of specific metabolic pathways that have been used in human imaging studies.


PET Positron-emission tomography Metabolism Metabolic imaging 



Acetyl coenzyme A


Acetyl-CoA synthase


Adenosine triphosphate


Brown adipose tissue


Blood-brain barrier


Blood-oxygen-level dependent




Choline acetyltransferase


Choline kinase


Carbon dioxide


Computed tomography


Copper-transporter 1




Diffuse large B-cell lymphoma


Deoxyribonucleic acids


2-Nitroimidazol-[18F]pentafluoropropyl acetamide


Fatty acid oxidation


Fatty acid synthesis


Fatty acid synthase


[18F]Fluoroazomycin arabinoside










16-[18F]Fluorohexadecanoic acid








Gastrin-releasing peptide receptor


Hodgkin’s lymphoma


Hypoxia-inducible factor-1α


Long-chain fatty acid


α-[11C]Methyl aminoisobutyric acid




Maximum intensity projection


Magnetic resonance imaging


Mammalian target of rapamycin


Nicotinamide adenine dinucleotide


Nicotinamide adenine dinucleotide phosphate


Non-small cell lung cancer




Pyruvate dehydrogenase complex


Positron-emission tomography


Prostate-specific antigen


Prostate-specific membrane antigen


Ribonucleic acid


Solute carrier


Single photon emission computed tomography


Standardized uptake value


Tricarboxylic acid


Transfer ribonucleic acid


Uncoupling protein 1


  1. 1.
    Ter-Pogossian MM. The origins of positron emission tomography. Semin Nucl Med. 1992;22(3):140–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Welch MJ, Redvanly CS. Handbook of radiopharmaceuticals: radiochemistry and applications, vol. xiv. Chichester, England: Wiley; 2003. p. 848.Google Scholar
  3. 3.
    Vaquero JJ, Kinahan P. Positron emission tomography: current challenges and opportunities for technological advances in clinical and preclinical imaging systems. Annu Rev Biomed Eng. 2015;17:385–414.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Cherry SR, Sorenson JA, Phelps ME. Physics in nuclear medicine. 4th ed. Philadelphia: Elsevier/Saunders; 2012. p. 523.Google Scholar
  5. 5.
    Nakamoto Y, Zasadny KR, Minn H, Wahl RL. Reproducibility of common semi-quantitative parameters for evaluating lung cancer glucose metabolism with positron emission tomography using 2-deoxy-2-[18F]fluoro-D-glucose. Mol Imaging Biol. 2002;4(2):171–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Devriese J, Beels L, Maes A, Van De Wiele C, Gheysens O, Pottel H. Review of clinically accessible methods to determine lean body mass for normalization of standardized uptake values. Q J Nucl Med Mol Imaging. 2016;60(1):1–11.PubMedGoogle Scholar
  7. 7.
    Watabe H, Ikoma Y, Kimura Y, Naganawa M, Shidahara M. PET kinetic analysis—compartmental model. Ann Nucl Med. 2006;20(9):583–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Schmidt KC, Turkheimer FE. Kinetic modeling in positron emission tomography. Q J Nucl Med. 2002;46(1):70–85.PubMedGoogle Scholar
  9. 9.
    Price JC. Principles of tracer kinetic analysis. Neuroimaging Clin N Am. 2003;13(4):689–704.PubMedCrossRefGoogle Scholar
  10. 10.
    Tonietto M, Rizzo G, Veronese M, Fujita M, Zoghbi SS, Zanotti-Fregonara P, et al. Plasma radiometabolite correction in dynamic PET studies: insights on the available modeling approaches. J Cereb Blood Flow Metab. 2016;36(2):326–39.PubMedCrossRefGoogle Scholar
  11. 11.
    Hricak H, Brenner DJ, Adelstein SJ, Frush DP, Hall EJ, Howell RW, et al. Managing radiation use in medical imaging: a multifaceted challenge. Radiology. 2011;258(3):889–905.PubMedCrossRefGoogle Scholar
  12. 12.
    Devlin TM. Textbook of biochemistry: with clinical correlations. 7th ed. Hoboken, NJ: Wiley; 2011. p. 1204.Google Scholar
  13. 13.
    Smith TA. The rate-limiting step for tumor [18F]fluoro-2-deoxy-D-glucose (FDG) incorporation. Nucl Med Biol. 2001;28(1):1–4.PubMedCrossRefGoogle Scholar
  14. 14.
    Morani F, Phadngam S, Follo C, Titone R, Aimaretti G, Galetto A, et al. PTEN regulates plasma membrane expression of glucose transporter 1 and glucose uptake in thyroid cancer cells. J Mol Endocrinol. 2014;53(2):247–58.PubMedCrossRefGoogle Scholar
  15. 15.
    Gwak H, Haegeman G, Tsang BK, Song YS. Cancer-specific interruption of glucose metabolism by resveratrol is mediated through inhibition of Akt/GLUT1 axis in ovarian cancer cells. Mol Carcinog. 2015;54(12):1529–40.PubMedCrossRefGoogle Scholar
  16. 16.
    Alvarez JV, Belka GK, Pan TC, Chen CC, Blankemeyer E, Alavi A, et al. Oncogene pathway activation in mammary tumors dictates FDG-PET uptake. Cancer Res. 2014;74(24):7583–98.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab. 1983;3(1):1–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Barrios-Lopez B, Bergstrom K. Radiolabeled sugars used for PET and SPECT imaging: mini-review. Curr Radiopharm. 2015.Google Scholar
  19. 19.
    Mun J. Radiofluorinated carbohydrates for positron emission tomography. Curr Top Med Chem. 2013;13(8):944–50.PubMedCrossRefGoogle Scholar
  20. 20.
    Ehrin E, Stone-Elander S, Nilsson JL, Bergstrom M, Blomqvist G, Brismar T, et al. C-11-labeled glucose and its utilization in positron-emission tomography. J Nucl Med. 1983;24(4):326–31.PubMedGoogle Scholar
  21. 21.
    Lifton JF, Welch MJ. Preparation of glucose labeled with 20-minute half-lived carbon-11. Radiat Res. 1971;45(1):35–40.PubMedCrossRefGoogle Scholar
  22. 22.
    Shiue C-Y, Wolf AP. The syntheses of 1-[11C]-D-glucose and related compounds for the measurement of brain glucose metabolism. J Label Compd Radiopharm. 1985;22(2):171–82.CrossRefGoogle Scholar
  23. 23.
    Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, et al. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem. 1977;28(5):897–916.PubMedCrossRefGoogle Scholar
  24. 24.
    Krohn KA, Mankoff DA, Muzi M, Link JM, Spence AM. True tracers: comparing FDG with glucose and FLT with thymidine. Nucl Med Biol. 2005;32(7):663–71.PubMedCrossRefGoogle Scholar
  25. 25.
    Graham MM, Muzi M, Spence AM, O'Sullivan F, Lewellen TK, Link JM, et al. The FDG lumped constant in normal human brain. J Nucl Med. 2002;43(9):1157–66.PubMedGoogle Scholar
  26. 26.
    Spence AM, Muzi M, Graham MM, O'Sullivan F, Krohn KA, Link JM, et al. Glucose metabolism in human malignant gliomas measured quantitatively with PET, 1-[C-11]glucose and FDG: analysis of the FDG lumped constant. J Nucl Med. 1998;39(3):440–8.PubMedGoogle Scholar
  27. 27.
    Liberti MV, Locasale JW. The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci. 2016;41(3):211–8.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Potter M, Newport E, Morten KJ. The Warburg effect: 80 years on. Biochem Soc Trans. 2016;44(5):1499–505.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–33.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Grigsby PW, Siegel BA, Dehdashti F, Rader J, Zoberi I. Posttherapy [18F] fluorodeoxyglucose positron emission tomography in carcinoma of the cervix: response and outcome. J Clin Oncol. 2004;22(11):2167–71.PubMedCrossRefGoogle Scholar
  31. 31.
    Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50(Suppl 1):122S–50S.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Goudarzi B, Jacene HA, Wahl RL. Measuring the "unmeasurable": assessment of bone marrow response to therapy using FDG-PET in patients with lymphoma. Acad Radiol. 2010;17(9):1175–85.PubMedCrossRefGoogle Scholar
  33. 33.
    Liu J, Dong M, Sun X, Li W, Xing L, Yu J. Prognostic value of 18F-FDG PET/CT in surgical non-small cell lung cancer: a meta-analysis. PLoS One. 2016;11(1):e0146195.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Kubo T, Furuta T, Johan MP, Ochi M. Prognostic significance of 18F-FDG PET at diagnosis in patients with soft tissue sarcoma and bone sarcoma; systematic review and meta-analysis. Eur J Cancer. 2016;58:104–11.PubMedCrossRefGoogle Scholar
  35. 35.
    Padma MV, Said S, Jacobs M, Hwang DR, Dunigan K, Satter M, et al. Prediction of pathology and survival by FDG PET in gliomas. J Neuro-Oncol. 2003;64(3):227–37.CrossRefGoogle Scholar
  36. 36.
    Yoon JH, Kim JH, Kang WJ, Sohn CH, Choi SH, Yun TJ, et al. Grading of cerebral glioma with multiparametric MR imaging and 18F-FDG-PET: concordance and accuracy. Eur Radiol. 2014;24(2):380–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Ulaner GA, Eaton A, Morris PG, Lilienstein J, Jhaveri K, Patil S, et al. Prognostic value of quantitative fluorodeoxyglucose measurements in newly diagnosed metastatic breast cancer. Cancer Med. 2013;2(5):725–33.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Park SY, Cho A, WS Y, Lee CY, Lee JG, Kim DJ, et al. Prognostic value of total lesion glycolysis by 18F-FDG PET/CT in surgically resected stage IA non-small cell lung cancer. J Nucl Med. 2015;56(1):45–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Cheson BD, Fisher RI, Barrington SF, Cavalli F, Schwartz LH, Zucca E, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014;32(27):3059–68.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Fallanca F, Alongi P, Incerti E, Gianolli L, Picchio M, Kayani I, et al. Diagnostic accuracy of FDG PET/CT for clinical evaluation at the end of treatment of HL and NHL: a comparison of the Deauville criteria (DC) and the international harmonization project criteria (IHPC). Eur J Nucl Med Mol Imaging. 2016;Google Scholar
  41. 41.
    Valls L, Badve C, Avril S, Herrmann K, Faulhaber P, O'Donnell J, et al. FDG-PET imaging in hematological malignancies. Blood Rev. 2016;30(4):317–31.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Gallamini A, Hutchings M, Ramadan S. Clinical presentation and staging of Hodgkin lymphoma. Semin Hematol. 2016;53(3):148–54.PubMedCrossRefGoogle Scholar
  43. 43.
    Press OW, Li H, Schoder H, Straus DJ, Moskowitz CH, LeBlanc M, et al. US intergroup trial of response-adapted therapy for stage III to IV Hodgkin lymphoma using early interim fluorodeoxyglucose-positron emission tomography imaging: Southwest Oncology Group S0816. J Clin Oncol. 2016;34(17):2020–7.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Nalecz KA. Solute carriers in the blood-brain Barrier: safety in abundance. Neurochem Res. 2016;Google Scholar
  45. 45.
    Paulson OB, Hasselbalch SG, Rostrup E, Knudsen GM, Pelligrino D. Cerebral blood flow response to functional activation. J Cereb Blood Flow Metab. 2010;30(1):2–14.PubMedCrossRefGoogle Scholar
  46. 46.
    Nenov VI, Halgren E, Smith ME, Badier JM, Ropchan J, Blahd WH, et al. Localized brain metabolic response correlated with potentials evoked by words. Behav Brain Res. 1991;44(1):101–4.PubMedCrossRefGoogle Scholar
  47. 47.
    Kushner MJ, Rosenquist A, Alavi A, Rosen M, Dann R, Fazekas F, et al. Cerebral metabolism and patterned visual stimulation: a positron emission tomographic study of the human visual cortex. Neurology. 1988;38(1):89–95.PubMedCrossRefGoogle Scholar
  48. 48.
    Krings T, Schreckenberger M, Rohde V, Spetzger U, Sabri O, Reinges MH, et al. Functional MRI and 18F FDG-positron emission tomography for presurgical planning: comparison with electrical cortical stimulation. Acta Neurochir. 2002;144(9):889–99; discussion 99PubMedCrossRefGoogle Scholar
  49. 49.
    Foster NL, Heidebrink JL, Clark CM, Jagust WJ, Arnold SE, Barbas NR, et al. FDG-PET improves accuracy in distinguishing frontotemporal dementia and Alzheimer's disease. Brain. 2007;130(Pt 10):2616–35.PubMedCrossRefGoogle Scholar
  50. 50.
    Panegyres PK, Rogers JM, McCarthy M, Campbell A, Wu JS. Fluorodeoxyglucose-positron emission tomography in the differential diagnosis of early-onset dementia: a prospective, community-based study. BMC Neurol. 2009;9:41.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Goffin K, Dedeurwaerdere S, Van Laere K, Van Paesschen W. Neuronuclear assessment of patients with epilepsy. Semin Nucl Med. 2008;38(4):227–39.PubMedCrossRefGoogle Scholar
  52. 52.
    Gok B, Jallo G, Hayeri R, Wahl R, Aygun N. The evaluation of FDG-PET imaging for epileptogenic focus localization in patients with MRI positive and MRI negative temporal lobe epilepsy. Neuroradiology. 2013;55(5):541–50.PubMedCrossRefGoogle Scholar
  53. 53.
    Kumar A, Juhasz C, Asano E, Sood S, Muzik O, Chugani HT. Objective detection of epileptic foci by 18F-FDG PET in children undergoing epilepsy surgery. J Nucl Med. 2010;51(12):1901–7.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Dankbaar JW, Snijders TJ, Robe PA, Seute T, Eppinga W, Hendrikse J, et al. The use of 18F-FDG PET to differentiate progressive disease from treatment induced necrosis in high grade glioma. J Neuro-Oncol. 2015;125(1):167–75.CrossRefGoogle Scholar
  55. 55.
    Nihashi T, Dahabreh IJ, Terasawa T. Diagnostic accuracy of PET for recurrent glioma diagnosis: a meta-analysis. AJNR Am J Neuroradiol. 2013;34(5):944–50. s1-11PubMedCrossRefGoogle Scholar
  56. 56.
    Southworth R. Hexokinase-mitochondrial interaction in cardiac tissue: implications for cardiac glucose uptake, the 18FDG lumped constant and cardiac protection. J Bioenerg Biomembr. 2009;41(2):187–93.PubMedCrossRefGoogle Scholar
  57. 57.
    Herrero P, Sharp TL, Dence C, Haraden BM, Gropler RJ. Comparison of 1-11C-glucose and 18F-FDG for quantifying myocardial glucose use with PET. J Nucl Med. 2002;43(11):1530–41.PubMedGoogle Scholar
  58. 58.
    Herrero P, Kisrieva-Ware Z, Dence CS, Patterson B, Coggan AR, Han DH, et al. PET measurements of myocardial glucose metabolism with 1-11C-glucose and kinetic modeling. J Nucl Med. 2007;48(6):955–64.PubMedCrossRefGoogle Scholar
  59. 59.
    Renstrom B, Rommelfanger S, Stone CK, DeGrado TR, Carlson KJ, Scarbrough E, et al. Comparison of fatty acid tracers FTHA and BMIPP during myocardial ischemia and hypoxia. J Nucl Med. 1998;39(10):1684–9.PubMedGoogle Scholar
  60. 60.
    Schelbert HR. Evaluation of “metabolic fingerprints” of myocardial ischemia. Can J Cardiol. 1986;Suppl A:121A–30A.Google Scholar
  61. 61.
    Uebleis C, Hellweger S, Laubender RP, Becker A, Sohn HY, Lehner S, et al. The amount of dysfunctional but viable myocardium predicts long-term survival in patients with ischemic cardiomyopathy and left ventricular dysfunction. Int J Cardiovasc Imaging. 2013;29(7):1645–53.PubMedCrossRefGoogle Scholar
  62. 62.
    Wiggers H, Nielsen SS, Holdgaard P, Flo C, Norrelund H, Halbirk M, et al. Adaptation of nonrevascularized human hibernating and chronically stunned myocardium to long-term chronic myocardial ischemia. Am J Cardiol. 2006;98(12):1574–80.PubMedCrossRefGoogle Scholar
  63. 63.
    Abraham A, Nichol G, Williams KA, Guo A, deKemp RA, Garrard L, et al. 18F-FDG PET imaging of myocardial viability in an experienced center with access to 18F-FDG and integration with clinical management teams: the Ottawa-FIVE substudy of the PARR 2 trial. J Nucl Med. 2010;51(4):567–74.PubMedCrossRefGoogle Scholar
  64. 64.
    Takx RA, Ishai A, Truong QA, MacNabb MH, Scherrer-Crosbie M, Tawakol A. Supraclavicular Brown adipose tissue 18F-FDG uptake and cardiovascular disease. J Nucl Med. 2016;57(8):1221–5.PubMedCrossRefGoogle Scholar
  65. 65.
    Ozguven S, Ones T, Yilmaz Y, Turoglu HT, Imeryuz N. The role of active brown adipose tissue in human metabolism. Eur J Nucl Med Mol Imaging. 2016;43(2):355–61.PubMedCrossRefGoogle Scholar
  66. 66.
    Chen KY, Cypess AM, Laughlin MR, Haft CR, HH H, Bredella MA, et al. Brown adipose reporting criteria in imaging studies (BARCIST 1.0): recommendations for standardized FDG-PET/CT experiments in humans. Cell Metab. 2016;24(2):210–22.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Hediger MA, Clemencon B, Burrier RE, Bruford EA. The ABCs of membrane transporters in health and disease (SLC series): introduction. Mol Asp Med. 2013;34(2-3):95–107.CrossRefGoogle Scholar
  68. 68.
    Cesar-Razquin A, Snijder B, Frappier-Brinton T, Isserlin R, Gyimesi G, Bai X, et al. A call for systematic research on solute carriers. Cell. 2015;162(3):478–87.PubMedCrossRefGoogle Scholar
  69. 69.
    Rosario FJ, Kanai Y, Powell TL, Jansson T. Mammalian target of rapamycin signalling modulates amino acid uptake by regulating transporter cell surface abundance in primary human trophoblast cells. J Physiol. 2013;591(Pt 3):609–25.PubMedCrossRefGoogle Scholar
  70. 70.
    Dodd KM, Tee AR. Leucine and mTORC1: a complex relationship. Am J Physiol Endocrinol Metab. 2012;302(11):E1329–42.PubMedCrossRefGoogle Scholar
  71. 71.
    Fuchs BC, Bode BP. Amino acid transporters ASCT2 and LAT1 in cancer: partners in crime? Semin Cancer Biol. 2005;15(4):254–66.PubMedCrossRefGoogle Scholar
  72. 72.
    Huang C, McConathy J. Radiolabeled amino acids for oncologic imaging. J Nucl Med. 2013;54(7):1007–10.PubMedCrossRefGoogle Scholar
  73. 73.
    McConathy J, Yu W, Jarkas N, Seo W, Schuster DM, Goodman MM. Radiohalogenated nonnatural amino acids as PET and SPECT tumor imaging agents. Med Res Rev. 2012;32(4):868–905.PubMedCrossRefGoogle Scholar
  74. 74.
    Haining Z, Kawai N, Miyake K, .Okada M, Okubo S, Zhang X, et al. Relation of LAT1/4F2hc expression with pathological grade, proliferation and angiogenesis in human gliomas. BMC Clin Pathol 2012;12:4.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Kobayashi K, Ohnishi A, Promsuk J, Shimizu S, Kanai Y, Shiokawa Y, et al. Enhanced tumor growth elicited by L-type amino acid transporter 1 in human malignant glioma cells. Neurosurgery. 2008;62(2):493-503; discussion −4.Google Scholar
  76. 76.
    Nawashiro H, Otani N, Shinomiya N, Fukui S, Ooigawa H, Shima K, et al. L-type amino acid transporter 1 as a potential molecular target in human astrocytic tumors. Int J Cancer. 2006;119(3):484–92.PubMedCrossRefGoogle Scholar
  77. 77.
    Rapp M, Floeth FW, Felsberg J, Steiger HJ, Sabel M, Langen KJ, et al. Clinical value of O-(2-[18F]-fluoroethyl)-L-tyrosine positron emission tomography in patients with low-grade glioma. Neurosurg Focus. 2013;34(2):E3.PubMedCrossRefGoogle Scholar
  78. 78.
    Galldiks N, Langen KJ, Pope WB. From the clinician's point of view - what is the status quo of positron emission tomography in patients with brain tumors? Neuro-Oncology. 2015;17(11):1434–44.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Glaudemans AW, Enting RH, Heesters MA, Dierckx RA, van Rheenen RW, Walenkamp AM, et al. Value of 11C-methionine PET in imaging brain tumours and metastases. Eur J Nucl Med Mol Imaging. 2013;40(4):615–35.PubMedCrossRefGoogle Scholar
  80. 80.
    Thon N, Kunz M, Lemke L, Jansen NL, Eigenbrod S, Kreth S, et al. Dynamic 18F-FET PET in suspected WHO grade II gliomas defines distinct biological subgroups with different clinical courses. Int J Cancer. 2015;136(9):2132–45.PubMedCrossRefGoogle Scholar
  81. 81.
    Lohmann P, Herzog H, Rota Kops E, Stoffels G, Judov N, Filss C, et al. Dual-time-point O-(2-[18F]fluoroethyl)-L-tyrosine PET for grading of cerebral gliomas. Eur Radiol. 2015;25(10):3017–24.PubMedCrossRefGoogle Scholar
  82. 82.
    Venneti S, Dunphy MP, Zhang H, Pitter KL, Zanzonico P, Campos C, et al. Glutamine-based PET imaging facilitates enhanced metabolic evaluation of gliomas in vivo. Sci Transl Med. 2015;7(274):274ra17.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Mittra ES, Koglin N, Mosci C, Kumar M, Hoehne A, Keu KV, et al. Pilot preclinical and clinical evaluation of (4S)-4-(3-[18F]Fluoropropyl)-L-glutamate (18F-FSPG) for PET/CT imaging of intracranial malignancies. PLoS One. 2016;11(2):e0148628.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Kondo A, Ishii H, Aoki S, Suzuki M, Nagasawa H, Kubota K, et al. Phase IIa clinical study of [18F]fluciclovine: efficacy and safety of a new PET tracer for brain tumors. Ann Nucl Med. 2016;30(9):608–18.PubMedCrossRefGoogle Scholar
  85. 85.
    Rowe SP, Gorin MA, Allaf ME, Pienta KJ, Tran PT, Pomper MG, et al. PET imaging of prostate-specific membrane antigen in prostate cancer: current state of the art and future challenges. Prostate Cancer Prostatic Dis. 2016;19(3):223–30.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Wibmer AG, Burger IA, Sala E, Hricak H, Weber WA, Vargas HA. Molecular imaging of prostate cancer. Radiographics. 2016;36(1):142–59.PubMedCrossRefGoogle Scholar
  87. 87.
    Minamimoto R, Hancock S, Schneider B, Chin FT, Jamali M, Loening A, et al. Pilot comparison of 68Ga-RM2 PET and 68Ga-PSMA-11 PET in patients with biochemically recurrent prostate cancer. J Nucl Med. 2016;57(4):557–62.PubMedCrossRefGoogle Scholar
  88. 88.
    Oka S, Okudaira H, Yoshida Y, Schuster DM, Goodman MM, Shirakami Y. Transport mechanisms of trans-1-amino-3-fluoro[1-14C]cyclobutanecarboxylic acid in prostate cancer cells. Nucl Med Biol. 2012;39(1):109–19.PubMedCrossRefGoogle Scholar
  89. 89.
    Schuster DM, Nanni C, Fanti S. Evaluation of prostate cancer with radiolabeled amino acid analogs. J Nucl Med. 2016;57(Suppl 3):61S–6S.PubMedCrossRefGoogle Scholar
  90. 90.
    Shiiba M, Ishihara K, Kimura G, Kuwako T, Yoshihara H, Sato H, et al. Evaluation of primary prostate cancer using 11C-methionine-PET/CT and 18F-FDG-PET/CT. Ann Nucl Med. 2012;26(2):138–45.PubMedCrossRefGoogle Scholar
  91. 91.
    Arimoto MK, Higashi T, Nishii R, Kagawa S, Takahashi M, Kishibe Y, et al. 11C-methylaminoisobutyric acid (MeAIB) PET for evaluation of prostate cancer: compared with 18F-fluorodeoxyglucose PET. Ann Nucl Med. 2016;30(8):553–62.PubMedCrossRefGoogle Scholar
  92. 92.
    Ambrosini V, Morigi JJ, Nanni C, Castellucci P, Fanti S. Current status of PET imaging of neuroendocrine tumours ([18F]FDOPA, [68Ga]tracers, [11C]/[18F]-HTP). Q J Nucl Med Mol Imaging. 2015;59(1):58–69.PubMedGoogle Scholar
  93. 93.
    Imperiale A, Rust E, Gabriel S, Detour J, Goichot B, Duclos B, et al. 18F-fluorodihydroxyphenylalanine PET/CT in patients with neuroendocrine tumors of unknown origin: relation to tumor origin and differentiation. J Nucl Med. 2014;55(3):367–72.PubMedCrossRefGoogle Scholar
  94. 94.
    Janssen I, Chen CC, Taieb D, Patronas NJ, Millo CM, Adams KT, et al. 68Ga-DOTATATE PET/CT in the localization of head and neck paragangliomas compared with other functional imaging modalities and CT/MRI. J Nucl Med. 2016;57(2):186–91.PubMedCrossRefGoogle Scholar
  95. 95.
    Wise DR, Thompson CB. Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci. 2010;35(8):427–33.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Villar VH, Merhi F, Djavaheri-Mergny M, Duran RV. Glutaminolysis and autophagy in cancer. Autophagy. 2015;11(8):1198–208.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Jin L, Alesi GN, Kang S. Glutaminolysis as a target for cancer therapy. Oncogene. 2016;35(28):3619–25.PubMedCrossRefGoogle Scholar
  98. 98.
    Wu Z, Zha Z, Li G, Lieberman BP, Choi SR, Ploessl K, et al. [18F](2S,4S)-4-(3-Fluoropropyl)glutamine as a tumor imaging agent. Mol Pharm. 2014;11(11):3852–66.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Qu W, Oya S, Lieberman BP, Ploessl K, Wang L, Wise DR, et al. Preparation and characterization of L-[5-11C]-glutamine for metabolic imaging of tumors. J Nucl Med. 2012;53(1):98–105.PubMedCrossRefGoogle Scholar
  100. 100.
    Ploessl K, Wang L, Lieberman BP, Qu W, Kung HF. Comparative evaluation of 18F-labeled glutamic acid and glutamine as tumor metabolic imaging agents. J Nucl Med. 2012;53(10):1616–24.PubMedCrossRefGoogle Scholar
  101. 101.
    Qu W, Zha Z, Ploessl K, Lieberman BP, Zhu L, Wise DR, et al. Synthesis of optically pure 4-fluoro-glutamines as potential metabolic imaging agents for tumors. J Am Chem Soc. 2011;133(4):1122–33.PubMedCrossRefGoogle Scholar
  102. 102.
    Okudaira H, Nakanishi T, Oka S, Kobayashi M, Tamagami H, Schuster DM, et al. Kinetic analyses of trans-1-amino-3-[18F]fluorocyclobutanecarboxylic acid transport in Xenopus laevis oocytes expressing human ASCT2 and SNAT2. Nucl Med Biol. 2013;Google Scholar
  103. 103.
    Sundaram SK, Muzik O, Chugani DC, Mu F, Mangner TJ, Chugani HT. Quantification of protein synthesis in the human brain using L-[1-11C]-leucine PET: incorporation of factors for large neutral amino acids in plasma and for amino acids recycled from tissue. J Nucl Med. 2006;47(11):1787–95.PubMedGoogle Scholar
  104. 104.
    Smith CB, Schmidt KC, Qin M, Burlin TV, Cook MP, Kang J, et al. Measurement of regional rates of cerebral protein synthesis with L-[1-11C]leucine and PET with correction for recycling of tissue amino acids: II. Validation in rhesus monkeys. J Cereb Blood Flow Metab. 2005;25(5):629–40.PubMedCrossRefGoogle Scholar
  105. 105.
    Schmidt KC, Cook MP, Qin M, Kang J, Burlin TV, Smith CB. Measurement of regional rates of cerebral protein synthesis with L-[1-11C]leucine and PET with correction for recycling of tissue amino acids: I. Kinetic modeling approach. J Cereb Blood Flow Metab. 2005;25(5):617–28.PubMedCrossRefGoogle Scholar
  106. 106.
    Pruim J, Willemsen AT, Molenaar WM, van Waarde A, Paans AM, Heesters MA, et al. Brain tumors: L-[1-C-11]tyrosine PET for visualization and quantification of protein synthesis rate. Radiology. 1995;197(1):221–6.PubMedCrossRefGoogle Scholar
  107. 107.
    Coenen HH, Kling P, Stocklin G. Cerebral metabolism of L-[2-18F]fluorotyrosine, a new PET tracer of protein synthesis. J Nucl Med. 1989;30(8):1367–72.PubMedGoogle Scholar
  108. 108.
    Xu J, Zeng C, Chu W, Pan F, Rothfuss JM, Zhang F, et al. Identification of the PGRMC1 protein complex as the putative sigma-2 receptor binding site. Nat Commun. 2011;2:380.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Shoghi KI, Xu J, Su Y, He J, Rowland D, Yan Y, et al. Quantitative receptor-based imaging of tumor proliferation with the sigma-2 ligand [18F]ISO-1. PLoS One. 2013;8(9):e74188.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Mach RH, Dehdashti F, Wheeler KT. PET radiotracers for imaging the proliferative status of solid tumors. PET Clin. 2009;4(1):1–15.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Christman D, Crawford EJ, Friedkin M, Wolf AP. Detection of DNA synthesis in intact organisms with positron-emitting (methyl-11C)thymidine. Proc Natl Acad Sci U S A. 1972;69(4):988–92.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Poupeye EM, Goethals PP, Dams RF, De Leenheer AP, van Eijkeren ME. Evaluation of [11C]thymidine for measurement of cell proliferation in fast dividing tissues. Nucl Med Biol. 1993;20(3):359–62.PubMedCrossRefGoogle Scholar
  113. 113.
    Shields AF, Larson SM, Grunbaum Z, Graham MM. Short-term thymidine uptake in normal and neoplastic tissues: studies for PET. J Nucl Med. 1984;25(7):759–64.PubMedGoogle Scholar
  114. 114.
    Kostakoglu L. Novel PET radiotracers for potential use in management of lymphoma. PET Clin. 2012;7:83–117.PubMedCrossRefGoogle Scholar
  115. 115.
    Plotnik DA, Emerick LE, Krohn KA, Unadkat JD, Schwartz JL. Different modes of transport for 3H-thymidine, 3H-FLT, and 3H-FMAU in proliferating and nonproliferating human tumor cells. J Nucl Med. 2010;51(9):1464–71.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Grierson JR, Schwartz JL, Muzi M, Jordan R, Krohn KA. Metabolism of 3′-deoxy-3′-[F-18]fluorothymidine in proliferating A549 cells: validations for positron emission tomography. Nucl Med Biol. 2004;31(7):829–37.PubMedCrossRefGoogle Scholar
  117. 117.
    Mankoff DA, Muzi M, Krohn KA. Quantitative positron emission tomography imaging to measure tumor response to therapy: what is the best method? Mol Imaging Biol. 2003;5(5):281–5.PubMedCrossRefGoogle Scholar
  118. 118.
    Muzi M, Vesselle H, Grierson JR, Mankoff DA, Schmidt RA, Peterson L, et al. Kinetic analysis of 3′-deoxy-3′-fluorothymidine PET studies: validation studies in patients with lung cancer. J Nucl Med. 2005;46(2):274–82.PubMedGoogle Scholar
  119. 119.
    Muzi M, Mankoff DA, Grierson JR, Wells JM, Vesselle H, Krohn KA. Kinetic modeling of 3′-deoxy-3′-fluorothymidine in somatic tumors: mathematical studies. J Nucl Med. 2005;46(2):371–80.PubMedGoogle Scholar
  120. 120.
    Tehrani OS, Shields AF. PET imaging of proliferation with pyrimidines. J Nucl Med. 2013;54(6):903–12.PubMedCrossRefGoogle Scholar
  121. 121.
    Herrmann K, Buck AK. Proliferation imaging with 18F-fluorothymidine PET/computed tomography: physiologic uptake, variants, and pitfalls. PET Clin. 2014;9(3):331–8.PubMedCrossRefGoogle Scholar
  122. 122.
    Peck M, Pollack HA, Friesen A, Muzi M, Shoner SC, Shankland EG, et al. Applications of PET imaging with the proliferation marker [18F]-FLT. Q J Nucl Med Mol Imaging. 2015;59(1):95–104.PubMedPubMedCentralGoogle Scholar
  123. 123.
    Bollineni VR, Kramer GM, Jansma EP, Liu Y, Oyen WJ. A systematic review on [18F]FLT-PET uptake as a measure of treatment response in cancer patients. Eur J Cancer. 2016;55:81–97.PubMedCrossRefGoogle Scholar
  124. 124.
    van Waarde A, Jager PL, Ishiwata K, Dierckx RA, Elsinga PH. Comparison of sigma-ligands and metabolic PET tracers for differentiating tumor from inflammation. J Nucl Med. 2006;47(1):150–4.PubMedGoogle Scholar
  125. 125.
    Lee TS, Ahn SH, Moon BS, Chun KS, Kang JH, Cheon GJ, et al. Comparison of 18F-FDG, 18F-FET and 18F-FLT for differentiation between tumor and inflammation in rats. Nucl Med Biol. 2009;36(6):681–6.PubMedCrossRefGoogle Scholar
  126. 126.
    Tan Y, Liang J, Liu D, Zhu F, Wang G, Ding X, et al. 18F-FLT PET/CT imaging in a Wister rabbit inflammation model. Exp Ther Med. 2014;8(1):69–72.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Dittmann H, Dohmen BM, Paulsen F, Eichhorn K, Eschmann SM, Horger M, et al. [18F]FLT PET for diagnosis and staging of thoracic tumours. Eur J Nucl Med Mol Imaging. 2003;30(10):1407–12.PubMedCrossRefGoogle Scholar
  128. 128.
    Cobben DC, Elsinga PH, Hoekstra HJ, Suurmeijer AJ, Vaalburg W, Maas B, et al. Is 18F-3′-fluoro-3′-deoxy-L-thymidine useful for the staging and restaging of non-small cell lung cancer? J Nucl Med. 2004;45(10):1677–82.PubMedGoogle Scholar
  129. 129.
    van Westreenen HL, Cobben DC, Jager PL, van Dullemen HM, Wesseling J, Elsinga PH, et al. Comparison of 18F-FLT PET and 18F-FDG PET in esophageal cancer. J Nucl Med. 2005;46(3):400–4.PubMedGoogle Scholar
  130. 130.
    Zhao F, Cui Y, Li M, Fu Z, Chen Z, Kong L, et al. Prognostic value of 3′-deoxy-3′-18F-fluorothymidine ([18F] FLT PET) in patients with recurrent malignant gliomas. Nucl Med Biol. 2014;41(8):710–5.PubMedCrossRefGoogle Scholar
  131. 131.
    Mitamura K, Yamamoto Y, Kudomi N, Maeda Y, Norikane T, Miyake K, et al. Intratumoral heterogeneity of 18F-FLT uptake predicts proliferation and survival in patients with newly diagnosed gliomas. Ann Nucl Med. 2016;Google Scholar
  132. 132.
    Ma DJ, Galanis E, Anderson SK, Schiff D, Kaufmann TJ, Peller PJ, et al. A phase II trial of everolimus, temozolomide, and radiotherapy in patients with newly diagnosed glioblastoma: NCCTG N057K. Neuro-Oncology. 2015;17(9):1261–9.PubMedCrossRefGoogle Scholar
  133. 133.
    Lodge MA, Holdhoff M, Leal JP, Bag AK, Nabors LB, Mintz A, et al. Repeatability of 18F-FLT PET in a multi-center study of patients with high grade glioma. In:J Nucl Med; 2016.Google Scholar
  134. 134.
    Chen W, Cloughesy T, Kamdar N, Satyamurthy N, Bergsneider M, Liau L, et al. Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J Nucl Med. 2005;46(6):945–52.PubMedGoogle Scholar
  135. 135.
    Nowosielski M, DiFranco MD, Putzer D, Seiz M, Recheis W, Jacobs AH, et al. An intra-individual comparison of MRI, [18F]-FET and [18F]-FLT PET in patients with high-grade gliomas. PLoS One. 2014;9(4):e95830.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Tripathi M, Sharma R, D'Souza M, Jaimini A, Panwar P, Varshney R, et al. Comparative evaluation of F-18 FDOPA, F-18 FDG, and F-18 FLT-PET/CT for metabolic imaging of low grade gliomas. Clin Nucl Med. 2009;34(12):878–83.PubMedCrossRefGoogle Scholar
  137. 137.
    Singh R, Cuervo AM. Lipophagy: connecting autophagy and lipid metabolism. Int J Cell Biol 2012;2012:282041.Google Scholar
  138. 138.
    Camici P, Ferrannini E, Opie LH. Myocardial metabolism in ischemic heart disease: basic principles and application to imaging by positron emission tomography. Prog Cardiovasc Dis. 1989;32(3):217–38.PubMedCrossRefGoogle Scholar
  139. 139.
    Bergmann SR. Imaging of myocardial fatty acid metabolism with PET. J Nucl Cardiol. 2007;14(3 Suppl):S118–24.PubMedCrossRefGoogle Scholar
  140. 140.
    Lopes-Cardozo M, Mulder I, van Vugt F, Hermans PG, van den Bergh SG, Klazinga W, et al. Aspects of ketogenesis: control and mechanism of ketone-body formation in isolated rat-liver mitochondria. Mol Cell Biochem. 1975;9(3):155–73.PubMedCrossRefGoogle Scholar
  141. 141.
    Lindhe O, Sun A, Ulin J, Rahman O, Langstrom B, Sorensen J. [18F]Fluoroacetate is not a functional analogue of [11C]acetate in normal physiology. Eur J Nucl Med Mol Imaging. 2009;36(9):1453–9.PubMedCrossRefGoogle Scholar
  142. 142.
    Bozza PT, Viola JP. Lipid droplets in inflammation and cancer. Prostaglandins Leukot Essent Fatty Acids. 2010;82(4-6):243–50.PubMedCrossRefGoogle Scholar
  143. 143.
    Carracedo A, Cantley LC, Pandolfi PP. Cancer metabolism: fatty acid oxidation in the limelight. Nat Rev Cancer. 2013;13(4):227–32.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Deberardinis RJ, Sayed N, Ditsworth D, Thompson CB. Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev. 2008;18(1):54–61.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Mashimo T, Pichumani K, Vemireddy V, Hatanpaa KJ, Singh DK, Sirasanagandla S, et al. Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. Cell. 2014;159(7):1603–14.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Lyssiotis CA, Cantley LC. Acetate fuels the cancer engine. Cell. 2014;159(7):1492–4.PubMedCrossRefGoogle Scholar
  147. 147.
    Iozzo P, Bucci M, Roivainen A, Nagren K, Jarvisalo MJ, Kiss J, et al. Fatty acid metabolism in the liver, measured by positron emission tomography, is increased in obese individuals. Gastroenterology. 2010;139(3):846-56, 56 e1-6.Google Scholar
  148. 148.
    Swinnen JV, Brusselmans K, Verhoeven G. Increased lipogenesis in cancer cells: new players, novel targets. Curr Opin Clin Nutr Metab Care. 2006;9(4):358–65.PubMedCrossRefGoogle Scholar
  149. 149.
    Daniels VW, Smans K, Royaux I, Chypre M, Swinnen JV, Zaidi N. Cancer cells differentially activate and thrive on de novo lipid synthesis pathways in a low-lipid environment. PLoS One. 2014;9(9):e106913.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Lewis DY, Boren J, Shaw GL, Bielik R, Ramos-Montoya A, Larkin TJ, et al. Late imaging with [1-11C]acetate improves detection of tumor fatty acid synthesis with PET. J Nucl Med. 2014;55(7):1144–9.PubMedCrossRefGoogle Scholar
  151. 151.
    Vavere AL, Kridel SJ, Wheeler FB, Lewis JS. 1-11C-acetate as a PET radiopharmaceutical for imaging fatty acid synthase expression in prostate cancer. J Nucl Med. 2008;49(2):327–34.PubMedCrossRefGoogle Scholar
  152. 152.
    Yoshii Y, Waki A, Furukawa T, Kiyono Y, Mori T, Yoshii H, et al. Tumor uptake of radiolabeled acetate reflects the expression of cytosolic acetyl-CoA synthetase: implications for the mechanism of acetate PET. Nucl Med Biol 2009;36(7):771-7.Google Scholar
  153. 153.
    Mohsen B, Giorgio T, Rasoul ZS, Werner L, Ali GR, Reza DK, et al. Application of C-11-acetate positron-emission tomography (PET) imaging in prostate cancer: systematic review and meta-analysis of the literature. BJU Int. 2013;112(8):1062–72.PubMedCrossRefGoogle Scholar
  154. 154.
    Grassi I, Nanni C, Allegri V, Morigi JJ, Montini GC, Castellucci P, et al. The clinical use of PET with 11C-acetate. Am J Nucl Med Mol Imaging. 2012;2(1):33–47.PubMedGoogle Scholar
  155. 155.
    Menendez JA, Lupu R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer. 2007;7(10):763–77.PubMedCrossRefGoogle Scholar
  156. 156.
    Rossi S, Graner E, Febbo P, Weinstein L, Bhattacharya N, Onody T, et al. Fatty acid synthase expression defines distinct molecular signatures in prostate cancer. Mol Cancer Res. 2003;1(10):707–15.PubMedGoogle Scholar
  157. 157.
    Dimitrakopoulou-Strauss A, Strauss LG. PET imaging of prostate cancer with 11C-acetate. J Nucl Med. 2003;44(4):556–8.PubMedGoogle Scholar
  158. 158.
    Yoshii Y, Furukawa T, Oyama N, Hasegawa Y, Kiyono Y, Nishii R, et al. Fatty acid synthase is a key target in multiple essential tumor functions of prostate cancer: uptake of radiolabeled acetate as a predictor of the targeted therapy outcome. PLoS One. 2013;8(5):e64570.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Regula N, Haggman M, Johansson S, Sorensen J. Malignant lipogenesis defined by 11C-acetate PET/CT predicts prostate cancer-specific survival in patients with biochemical relapse after prostatectomy. Eur J Nucl Med Mol Imaging. 2016;Google Scholar
  160. 160.
    EY Y, Muzi M, Hackenbracht JA, Rezvani BB, Link JM, Montgomery RB, et al. C11-acetate and F-18 FDG PET for men with prostate cancer bone metastases: relative findings and response to therapy. Clin Nucl Med. 2011;36(3):192–8.CrossRefGoogle Scholar
  161. 161.
    Muir D, Berl S, Clarke DD. Acetate and fluoroacetate as possible markers for glial metabolism in vivo. Brain Res. 1986;380(2):336–40.PubMedCrossRefGoogle Scholar
  162. 162.
    Clarke DD. Fluoroacetate and fluorocitrate: mechanism of action. Neurochem Res. 1991;16(9):1055–8.PubMedCrossRefGoogle Scholar
  163. 163.
    Nishii R, Tong W, Wendt R, 3rd, Soghomonyan S, Mukhopadhyay U, Balatoni J, et al. Pharmacokinetics, metabolism, biodistribution, radiation dosimetry, and toxicology of 18F-fluoroacetate (18F-FACE) in non-human primates. Mol Imaging Biol 2012;14(2):213-224.Google Scholar
  164. 164.
    Ponde DE, Dence CS, Oyama N, Kim J, Tai YC, Laforest R, et al. 18F-fluoroacetate: a potential acetate analog for prostate tumor imaging—in vivo evaluation of 18F-fluoroacetate versus 11C-acetate. J Nucl Med. 2007;48(3):420–8.PubMedGoogle Scholar
  165. 165.
    Miyabe H, Ohte N, Iida A, Narita H, Yoshida T, Kimura G. Evaluation of fatty acid beta-oxidation in patients with prior myocardial infarction in relation to myocardial blood flow, total oxidative metabolism, and left ventricular wall motion. Circ J. 2005;69(12):1459–65.PubMedCrossRefGoogle Scholar
  166. 166.
    Bessi VL, Labbe SM, Huynh DN, Menard L, Jossart C, Febbraio M, et al. EP 80317, a selective CD36 ligand, shows cardioprotective effects against post-ischaemic myocardial damage in mice. Cardiovasc Res. 2012;96(1):99–108.PubMedCrossRefGoogle Scholar
  167. 167.
    Ishida Y, Nagata S, Uehara T, Yasumura Y, Fukuchi K, Miyatake K. Clinical analysis of myocardial perfusion and metabolism in patients with hypertrophic cardiomyopathy by single photon emission tomography and positron emission tomography. J Cardiol. 2001;37(Suppl 1):121–8.PubMedGoogle Scholar
  168. 168.
    Taylor M, Wallhaus TR, Degrado TR, Russell DC, Stanko P, Nickles RJ, et al. An evaluation of myocardial fatty acid and glucose uptake using PET with [18F]fluoro-6-thia-heptadecanoic acid and [18F]FDG in patients with congestive heart failure. J Nucl Med. 2001;42(1):55–62.PubMedGoogle Scholar
  169. 169.
    Mather KJ, DeGrado TR. Imaging of myocardial fatty acid oxidation. Biochim Biophys Acta. 2016;Google Scholar
  170. 170.
    Brown MA, Myears DW, Bergmann SR. Noninvasive assessment of canine myocardial oxidative metabolism with carbon-11 acetate and positron emission tomography. J Am Coll Cardiol. 1988;12(4):1054–63.PubMedCrossRefGoogle Scholar
  171. 171.
    Brown MA, Myears DW, Bergmann SR. Validity of estimates of myocardial oxidative metabolism with carbon-11 acetate and positron emission tomography despite altered patterns of substrate utilization. J Nucl Med. 1989;30(2):187–93.PubMedGoogle Scholar
  172. 172.
    Peters R, Wakelin RW. Biochemistry of fluoroacetate poisoning; the isolation and some properties of the fluorotricarboxylic acid inhibitor of citrate metabolism. Proceedings of the Royal Society of London Series B, Biological sciences. 1953;140(901):497–507.PubMedCrossRefGoogle Scholar
  173. 173.
    Proudfoot AT, Bradberry SM, Vale JA. Sodium fluoroacetate poisoning. Toxicol Rev. 2006;25(4):213–9.PubMedCrossRefGoogle Scholar
  174. 174.
    Lauble H, Kennedy MC, Emptage MH, Beinert H, Stout CD. The reaction of fluorocitrate with aconitase and the crystal structure of the enzyme-inhibitor complex. Proc Natl Acad Sci U S A. 1996;93(24):13699–703.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Lerch RA, Ambos HD, Bergmann SR, Welch MJ, Ter-Pogossian MM, Sobel BE. Localization of viable, ischemic myocardium by positron-emission tomography with 11C-palmitate. Circulation. 1981;64(4):689–99.PubMedCrossRefGoogle Scholar
  176. 176.
    Bergmann SR. Use and limitations of metabolic tracers labeled with positron-emitting radionuclides in the identification of viable myocardium. J Nucl Med. 1994;35(4 Suppl):15S–22S.PubMedGoogle Scholar
  177. 177.
    Bergmann SR, Weinheimer CJ, Markham J, Herrero P. Quantitation of myocardial fatty acid metabolism using PET. J Nucl Med. 1996;37(10):1723–30.PubMedGoogle Scholar
  178. 178.
    Schon HR, Schelbert HR, Robinson G, Najafi A, Huang SC, Hansen H, et al. C- 11 labeled palmitic acid for the noninvasive evaluation of regional myocardial fatty acid metabolism with positron-computed tomography. I. Kinetics of C- 11 palmitic acid in normal myocardium. Am Heart J. 1982;103(4 Pt 1):532–47.PubMedCrossRefGoogle Scholar
  179. 179.
    Lerch R, Tamm C, Papageorgiou I, Benzi RH. Myocardial fatty acid oxidation during ischemia and reperfusion. Mol Cell Biochem. 1992;116(1-2):103–9.PubMedCrossRefGoogle Scholar
  180. 180.
    Knabb RM, Rosamond TL, Fox KA, Sobel BE, Bergmann SR. Enhancement of salvage of reperfused ischemic myocardium by diltiazem. J Am Coll Cardiol. 1986;8(4):861–71.PubMedCrossRefGoogle Scholar
  181. 181.
    Livni E, Elmaleh DR, Levy S, Brownell GL, Strauss WH. Beta-methyl[1-11C]heptadecanoic acid: a new myocardial metabolic tracer for positron emission tomography. J Nucl Med. 1982;23(2):169–75.PubMedGoogle Scholar
  182. 182.
    Takahashi T, Nishimura S, Ido T, Ishiwata K, Iwata R. Biological evaluation of 5-methyl-branched-chain omega-[18F]fluorofatty acid: a potential myocardial imaging tracer for positron emission tomography. Nucl Med Biol. 1996;23(3):303–8.PubMedCrossRefGoogle Scholar
  183. 183.
    Goodman MM, Kirsch G, Knapp FF, Jr. Synthesis and evaluation of radioiodinated terminal p-iodophenyl-substituted alpha- and beta-methyl-branched fatty acids. J Med Chem 1984;27(3):390-397.Google Scholar
  184. 184.
    Knapp FF, Jr., Ambrose KR, Callahan AP, Ferren LA, Grigsby RA, Irgolic KJ. Effects of chain length and tellurium position on the myocardial uptake of Te-123m fatty acids. J Nucl Med 1981;22(11):988-993.Google Scholar
  185. 185.
    DeGrado TR, Coenen HH, Stocklin G. 14(R,S)-[18F]fluoro-6-thia-heptadecanoic acid (FTHA): evaluation in mouse of a new probe of myocardial utilization of long chain fatty acids. J Nucl Med. 1991;32(10):1888–96.PubMedGoogle Scholar
  186. 186.
    DeGrado TR, Wang S, Holden JE, Nickles RJ, Taylor M, Stone CK. Synthesis and preliminary evaluation of 18F-labeled 4-thia palmitate as a PET tracer of myocardial fatty acid oxidation. Nucl Med Biol. 2000;27(3):221–31.PubMedCrossRefGoogle Scholar
  187. 187.
    Shoup TM, Elmaleh DR, Bonab AA, Fischman AJ. Evaluation of trans-9-18F-fluoro-3,4-Methyleneheptadecanoic acid as a PET tracer for myocardial fatty acid imaging. J Nucl Med. 2005;46(2):297–304.PubMedGoogle Scholar
  188. 188.
    Roivainen A, Forsback S, Gronroos T, Lehikoinen P, Kahkonen M, Sutinen E, et al. Blood metabolism of [methyl-11C]choline; implications for in vivo imaging with positron emission tomography. Eur J Nucl Med. 2000;27(1):25–32.PubMedCrossRefGoogle Scholar
  189. 189.
    Gibellini F, Smith TK. The Kennedy pathway—de novo synthesis of phosphatidylethanolamine and phosphatidylcholine. IUBMB Life. 2010;62(6):414–28.PubMedCrossRefGoogle Scholar
  190. 190.
    Ackerstaff E, Pflug BR, Nelson JB, Bhujwalla ZM. Detection of increased choline compounds with proton nuclear magnetic resonance spectroscopy subsequent to malignant transformation of human prostatic epithelial cells. Cancer Res. 2001;61(9):3599–603.PubMedGoogle Scholar
  191. 191.
    Glunde K, Bhujwalla ZM, Ronen SM. Choline metabolism in malignant transformation. Nat Rev Cancer. 2011;11(12):835–48.PubMedPubMedCentralGoogle Scholar
  192. 192.
    Lever M, Slow S. The clinical significance of betaine, an osmolyte with a key role in methyl group metabolism. Clin Biochem. 2010;43(9):732–44.PubMedCrossRefGoogle Scholar
  193. 193.
    Bansal A, Shuyan W, Hara T, Harris RA, Degrado TR. Biodisposition and metabolism of [18F]fluorocholine in 9L glioma cells and 9L glioma-bearing fisher rats. Eur J Nucl Med Mol Imaging. 2008;35(6):1192–203.PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Smith G, Zhao Y, Leyton J, Shan B, Nguyen QD, Perumal M, et al. Radiosynthesis and pre-clinical evaluation of [18F]fluoro-[1,2-2H4]choline. Nucl Med Biol. 2011;38(1):39–51.PubMedCrossRefGoogle Scholar
  195. 195.
    Cantor JR, Sabatini DM. Cancer cell metabolism: one hallmark, many faces. Cancer Discov. 2012;2(10):881–98.PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Aboagye EO, Bhujwalla ZM. Malignant transformation alters membrane choline phospholipid metabolism of human mammary epithelial cells. Cancer Res. 1999;59(1):80–4.PubMedGoogle Scholar
  197. 197.
    Accioly MT, Pacheco P, Maya-Monteiro CM, Carrossini N, Robbs BK, Oliveira SS, et al. Lipid bodies are reservoirs of cyclooxygenase-2 and sites of prostaglandin-E2 synthesis in colon cancer cells. Cancer Res. 2008;68(6):1732–40.PubMedCrossRefGoogle Scholar
  198. 198.
    Nomura DK, Long JZ, Niessen S, Hoover HS, Ng SW, Cravatt BF. Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell. 2010;140(1):49–61.PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Zadra G, Photopoulos C, Loda M. The fat side of prostate cancer. Biochim Biophys Acta. 2013;1831(10):1518–32.PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008;7(1):11–20.PubMedCrossRefGoogle Scholar
  201. 201.
    Fackler OT, Grosse R. Cell motility through plasma membrane blebbing. J Cell Biol. 2008;181(6):879–84.PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    de Castro LF, Maycas M, Bravo B, Esbrit P, Gortazar A. VEGF receptor 2 (VEGFR2) activation is essential for osteocyte survival induced by mechanotransduction. J Cell Physiol. 2015;230(2):278–85.PubMedCrossRefGoogle Scholar
  203. 203.
    Meng X, Riordan NH, Riordan HD, Mikirova N, Jackson J, Gonzalez MJ, et al. Cell membrane fatty acid composition differs between normal and malignant cell lines. P R Health Sci J. 2004;23(2):103–6.PubMedGoogle Scholar
  204. 204.
    Yoshimoto M, Waki A, Obata A, Furukawa T, Yonekura Y, Fujibayashi Y. Radiolabeled choline as a proliferation marker: comparison with radiolabeled acetate. Nucl Med Biol. 2004;31(7):859–65.PubMedCrossRefGoogle Scholar
  205. 205.
    Hara T, Kosaka N, Kishi H. PET imaging of prostate cancer using carbon-11-choline. J Nucl Med. 1998;39(6):990–5.PubMedGoogle Scholar
  206. 206.
    Bansal A, Harris RA, DeGrado TR. Choline phosphorylation and regulation of transcription of choline kinase alpha in hypoxia. J Lipid Res. 2012;53(1):149–57.PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    DeGrado TR, Coleman RE, Wang S, Baldwin SW, Orr MD, Robertson CN, et al. Synthesis and evaluation of 18F-labeled choline as an oncologic tracer for positron emission tomography: initial findings in prostate cancer. Cancer Res. 2001;61(1):110–7.PubMedGoogle Scholar
  208. 208.
    Umbehr MH, Muntener M, Hany T, Sulser T, Bachmann LM. The role of 11C-choline and 18F-fluorocholine positron emission tomography (PET) and PET/CT in prostate cancer: a systematic review and meta-analysis. Eur Urol. 2013;64(1):106–17.PubMedCrossRefGoogle Scholar
  209. 209.
    de Vogel S, Ulvik A, Meyer K, Ueland PM, Nygard O, Vollset SE, et al. Sarcosine and other metabolites along the choline oxidation pathway in relation to prostate cancer—a large nested case-control study within the JANUS cohort in Norway. Int J Cancer. 2014;134(1):197–206.PubMedCrossRefGoogle Scholar
  210. 210.
    Schmid DT, John H, Zweifel R, Cservenyak T, Westera G, Goerres GW, et al. Fluorocholine PET/CT in patients with prostate cancer: initial experience. Radiology. 2005;235(2):623–8.PubMedCrossRefGoogle Scholar
  211. 211.
    Sutinen E, Nurmi M, Roivainen A, Varpula M, Tolvanen T, Lehikoinen P, et al. Kinetics of [11C]choline uptake in prostate cancer: a PET study. Eur J Nucl Med Mol Imaging. 2004;31(3):317–24.PubMedCrossRefGoogle Scholar
  212. 212.
    Yoshida S, Nakagomi K, Goto S, Futatsubashi M, Torizuka T. 11C-choline positron emission tomography in prostate cancer: primary staging and recurrent site staging. Urol Int. 2005;74(3):214–20.PubMedCrossRefGoogle Scholar
  213. 213.
    Fuccio C, Schiavina R, Castellucci P, Rubello D, Martorana G, Celli M, et al. Androgen deprivation therapy influences the uptake of 11C-choline in patients with recurrent prostate cancer: the preliminary results of a sequential PET/CT study. Eur J Nucl Med Mol Imaging. 2011;38(11):1985–9.PubMedCrossRefGoogle Scholar
  214. 214.
    Giovacchini G, Picchio M, Coradeschi E, Scattoni V, Bettinardi V, Cozzarini C, et al. [11C]choline uptake with PET/CT for the initial diagnosis of prostate cancer: relation to PSA levels, tumour stage and anti-androgenic therapy. Eur J Nucl Med Mol Imaging. 2008;35(6):1065–73.PubMedCrossRefGoogle Scholar
  215. 215.
    Buchegger F, Garibotto V, Zilli T, Allainmat L, Jorcano S, Vees H, et al. First imaging results of an intraindividual comparison of 11C-acetate and 18F-fluorocholine PET/CT in patients with prostate cancer at early biochemical first or second relapse after prostatectomy or radiotherapy. Eur J Nucl Med Mol Imaging. 2014;41(1):68–78.PubMedCrossRefGoogle Scholar
  216. 216.
    Casamassima F, Masi L, Menichelli C, Bonucci I, Casamassima E, Lazzeri M, et al. Efficacy of eradicative radiotherapy for limited nodal metastases detected with choline PET scan in prostate cancer patients. Tumori. 2011;97(1):49–55.PubMedGoogle Scholar
  217. 217.
    Parashar B, Wernicke AG, Rice S, Osborne J, Singh P, Nori D, et al. Early assessment of radiation response using a novel functional imaging modality—[18F]fluorocholine PET (FCH-PET): a pilot study. Discov Med. 2012;14(74):13–20.PubMedPubMedCentralGoogle Scholar
  218. 218.
    Panagiotidis E, Shankar A, Afaq A, Bomanji J. Assessing therapy response of secreting pineal germ cell tumor on simultaneous 18F-choline PET/MRI. Clin Nucl Med. 2014;39(9):e387–8.PubMedCrossRefGoogle Scholar
  219. 219.
    Al-Saeedi F, Welch AE, Smith TA. [methyl-3H]choline incorporation into MCF7 tumour cells: correlation with proliferation. Eur J Nucl Med Mol Imaging. 2005;32(6):660–7.PubMedCrossRefGoogle Scholar
  220. 220.
    Harrison L, Blackwell K. Hypoxia and anemia: factors in decreased sensitivity to radiation therapy and chemotherapy? Oncologist. 2004;9(Suppl 5):31–40.PubMedCrossRefGoogle Scholar
  221. 221.
    Carnero A, Lleonart M. The hypoxic microenvironment: a determinant of cancer stem cell evolution. BioEssays. 2016;38(Suppl 1):S65–74.PubMedCrossRefGoogle Scholar
  222. 222.
    Fleming IN, Manavaki R, Blower PJ, West C, Williams KJ, Harris AL, et al. Imaging tumour hypoxia with positron emission tomography. Br J Cancer. 2015;112(2):238–50.PubMedCrossRefGoogle Scholar
  223. 223.
    Semenza GL. Hydroxylation of HIF-1: oxygen sensing at the molecular level. Physiology (Bethesda). 2004;19:176–82.CrossRefGoogle Scholar
  224. 224.
    Keith B, Simon MC. Hypoxia-inducible factors, stem cells, and cancer. Cell. 2007;129(3):465–72.PubMedPubMedCentralCrossRefGoogle Scholar
  225. 225.
    Huntly BJ, Gilliland DG. Leukaemia stem cells and the evolution of cancer-stem-cell research. Nat Rev Cancer. 2005;5(4):311–21.PubMedCrossRefGoogle Scholar
  226. 226.
    Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105–11.PubMedCrossRefGoogle Scholar
  227. 227.
    Lewis JS, Herrero P, Sharp TL, Engelbach JA, Fujibayashi Y, Laforest R, et al. Delineation of hypoxia in canine myocardium using PET and copper(II)-diacetyl-bis(N(4)-methylthiosemicarbazone). J Nucl Med. 2002;43(11):1557–69.PubMedGoogle Scholar
  228. 228.
    Lewis JS, Sharp TL, Laforest R, Fujibayashi Y, Welch MJ. Tumor uptake of copper-diacetyl-bis(N(4)-methylthiosemicarbazone): effect of changes in tissue oxygenation. J Nucl Med. 2001;42(4):655–61.PubMedGoogle Scholar
  229. 229.
    Lapi SE, Voller TF, Welch MJ. Positron emission tomography imaging of hypoxia. PET Clin. 2009;4(1):39–47.PubMedPubMedCentralCrossRefGoogle Scholar
  230. 230.
    Obata A, Yoshimi E, Waki A, Lewis JS, Oyama N, Welch MJ, et al. Retention mechanism of hypoxia selective nuclear imaging/radiotherapeutic agent cu-diacetyl-bis(N4-methylthiosemicarbazone) (cu-ATSM) in tumor cells. Ann Nucl Med. 2001;15(6):499–504.PubMedCrossRefGoogle Scholar
  231. 231.
    Dearling JL, Packard AB. Some thoughts on the mechanism of cellular trapping of cu(II)-ATSM. Nucl Med Biol. 2010;37(3):237–43.PubMedCrossRefGoogle Scholar
  232. 232.
    Price KA, Crouch PJ, Volitakis I, Paterson BM, Lim S, Donnelly PS, et al. Mechanisms controlling the cellular accumulation of copper bis(thiosemicarbazonato) complexes. Inorg Chem. 2011;50(19):9594–605.PubMedCrossRefGoogle Scholar
  233. 233.
    Lewis JS, McCarthy DW, McCarthy TJ, Fujibayashi Y, Welch MJ. Evaluation of 64Cu-ATSM in vitro and in vivo in a hypoxic tumor model. J Nucl Med. 1999;40(1):177–83.PubMedGoogle Scholar
  234. 234.
    Colombie M, Gouard S, Frindel M, Vidal A, Cherel M, Kraeber-Bodere F, et al. Focus on the controversial aspects of 64Cu-ATSM in tumoral hypoxia mapping by PET imaging. Front Med (Lausanne). 2015;2:58.Google Scholar
  235. 235.
    Dietz DW, Dehdashti F, Grigsby PW, Malyapa RS, Myerson RJ, Picus J, et al. Tumor hypoxia detected by positron emission tomography with 60Cu-ATSM as a predictor of response and survival in patients undergoing Neoadjuvant chemoradiotherapy for rectal carcinoma: a pilot study. Dis Colon Rectum. 2008;51(11):1641–8.PubMedPubMedCentralCrossRefGoogle Scholar
  236. 236.
    Dehdashti F, Mintun MA, Lewis JS, Bradley J, Govindan R, Laforest R, et al. In vivo assessment of tumor hypoxia in lung cancer with 60Cu-ATSM. Eur J Nucl Med Mol Imaging. 2003;30(6):844–50.PubMedCrossRefGoogle Scholar
  237. 237.
    Lewis JS, Laforest R, Dehdashti F, Grigsby PW, Welch MJ, Siegel BA. An imaging comparison of 64Cu-ATSM and 60Cu-ATSM in cancer of the uterine cervix. J Nucl Med. 2008;49(7):1177–82.PubMedPubMedCentralCrossRefGoogle Scholar
  238. 238.
    Dehdashti F, Grigsby PW, Lewis JS, Laforest R, Siegel BA, Welch MJ. Assessing tumor hypoxia in cervical cancer by PET with 60Cu-labeled diacetyl-bis(N4-methylthiosemicarbazone). J Nucl Med. 2008;49(2):201–5.PubMedCrossRefGoogle Scholar
  239. 239.
    Koh WJ, Rasey JS, Evans ML, Grierson JR, Lewellen TK, Graham MM, et al. Imaging of hypoxia in human tumors with [F-18]fluoromisonidazole. Int J Radiat Oncol Biol Phys. 1992;22(1):199–212.PubMedCrossRefGoogle Scholar
  240. 240.
    Jerabek PA, Patrick TB, Kilbourn MR, Dischino DD, Welch MJ. Synthesis and biodistribution of 18F-labeled fluoronitroimidazoles: potential in vivo markers of hypoxic tissue. Int J Rad Appl Instrum A. 1986;37(7):599–605.PubMedCrossRefGoogle Scholar
  241. 241.
    Rasey JS, Koh WJ, Evans ML, Peterson LM, Lewellen TK, Graham MM, et al. Quantifying regional hypoxia in human tumors with positron emission tomography of [18F]fluoromisonidazole: a pretherapy study of 37 patients. Int J Radiat Oncol Biol Phys. 1996;36(2):417–28.PubMedCrossRefGoogle Scholar
  242. 242.
    Lawrentschuk N, Poon AM, Foo SS, Putra LG, Murone C, Davis ID, et al. Assessing regional hypoxia in human renal tumours using 18F-fluoromisonidazole positron emission tomography. BJU Int. 2005;96(4):540–6.PubMedCrossRefGoogle Scholar
  243. 243.
    Hatano T, Zhao S, Zhao Y, Nishijima K, Kuno N, Hanzawa H, et al. Biological characteristics of intratumoral [F-18]fluoromisonidazole distribution in a rodent model of glioma. Int J Oncol. 2013;42(3):823–30.PubMedPubMedCentralCrossRefGoogle Scholar
  244. 244.
    Troost EG, Laverman P, Philippens ME, Lok J, van der Kogel AJ, Oyen WJ, et al. Correlation of [18F]FMISO autoradiography and pimonidazole [corrected] immunohistochemistry in human head and neck carcinoma xenografts. Eur J Nucl Med Mol Imaging. 2008;35(10):1803–11.PubMedCrossRefGoogle Scholar
  245. 245.
    Lee ST, Scott AM. Hypoxia positron emission tomography imaging with 18F-fluoromisonidazole. Semin Nucl Med. 2007;37(6):451–61.PubMedCrossRefGoogle Scholar
  246. 246.
    Cheng J, Lei L, Xu J, Sun Y, Zhang Y, Wang X, et al. 18F-fluoromisonidazole PET/CT: a potential tool for predicting primary endocrine therapy resistance in breast cancer. J Nucl Med. 2013;54(3):333–40.PubMedCrossRefGoogle Scholar
  247. 247.
    Cheng X, Bayer C, Maftei CA, Astner ST, Vaupel P, Ziegler SI, et al. Preclinical evaluation of parametric image reconstruction of [18F]FMISO PET: correlation with ex vivo immunohistochemistry. Phys Med Biol. 2014;59(2):347–62.PubMedCrossRefGoogle Scholar
  248. 248.
    Murakami M, Zhao S, Zhao Y, Chowdhury NF, Yu W, Nishijima K, et al. Evaluation of changes in the tumor microenvironment after sorafenib therapy by sequential histology and 18F-fluoromisonidazole hypoxia imaging in renal cell carcinoma. Int J Oncol. 2012;41(5):1593–600.PubMedPubMedCentralCrossRefGoogle Scholar
  249. 249.
    Zimny M, Gagel B, DiMartino E, Hamacher K, Coenen HH, Westhofen M, et al. FDG—a marker of tumour hypoxia? A comparison with [18F]fluoromisonidazole and pO2-polarography in metastatic head and neck cancer. Eur J Nucl Med Mol Imaging. 2006;33(12):1426–31.PubMedCrossRefGoogle Scholar
  250. 250.
    Bentzen L, Keiding S, Nordsmark M, Falborg L, Hansen SB, Keller J, et al. Tumour oxygenation assessed by 18F-fluoromisonidazole PET and polarographic needle electrodes in human soft tissue tumours. Radiother Oncol. 2003;67(3):339–44.PubMedCrossRefGoogle Scholar
  251. 251.
    Busk M, Horsman MR, Jakobsen S, Bussink J, van der Kogel A, Overgaard J. Cellular uptake of PET tracers of glucose metabolism and hypoxia and their linkage. Eur J Nucl Med Mol Imaging. 2008;35(12):2294–303.PubMedCrossRefGoogle Scholar
  252. 252.
    Halmos GB, Bruine de Bruin L, Langendijk JA, van der Laan BF, Pruim J, Steenbakkers RJ. Head and neck tumor hypoxia imaging by 18F-fluoroazomycin-arabinoside (18F-FAZA)-PET: a review. Clin Nucl Med. 2014;39(1):44–8.PubMedCrossRefGoogle Scholar
  253. 253.
    Sorger D, Patt M, Kumar P, Wiebe LI, Barthel H, Seese A, et al. [18F]Fluoroazomycinarabinofuranoside (18FAZA) and [18F]fluoromisonidazole (18FMISO): a comparative study of their selective uptake in hypoxic cells and PET imaging in experimental rat tumors. Nucl Med Biol. 2003;30(3):317–26.PubMedCrossRefGoogle Scholar
  254. 254.
    Evans SM, Judy KD, Dunphy I, Jenkins WT, Nelson PT, Collins R, et al. Comparative measurements of hypoxia in human brain tumors using needle electrodes and EF5 binding. Cancer Res. 2004;64(5):1886–92.PubMedCrossRefGoogle Scholar
  255. 255.
    Evans SM, Fraker D, Hahn SM, Gleason K, Jenkins WT, Jenkins K, et al. EF5 binding and clinical outcome in human soft tissue sarcomas. Int J Radiat Oncol Biol Phys. 2006;64(3):922–7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of RadiologyEmory University School of MedicineAtlantaUSA
  2. 2.Department of RadiologyUniversity of Alabama at Birmingham School of MedicineBirminghamUSA
  3. 3.Division of Molecular Imaging and TherapeuticsUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations