Other Metabolic Syndromes

  • Matthew T. Whitehead
  • Andrea L. GropmanEmail author


Most inborn errors of metabolism (IEMs) have neurological symptoms, and many cause injury to the developing central nervous system (CNS). Diagnosis can be challenging, as a number of these neurometabolic disease processes manifest similar signs and symptoms. Disorders may present with acute encephalopathy and metabolic crisis; these are the most critical to recognize and prevent as the risk for repeated, intermittent, or ongoing injury is significant. On the other hand, some IEMS can cause progressive injury resulting in chronic encephalopathy and may be amenable to lifelong therapies. MRI can be used to identify patterns of injury to help classify the nature of the neural injury, and in many cases, MRI provides key clues or biomarkers to identify the underlying disease. Herein, we review some of the most common disorders classified as acute or chronic encephalopathy-associated IEMs. Disease-specific MRI and MR spectroscopy patterns are showcased.


Metabolism IEM Imaging MRI Spectroscopy 


  1. 1.
    Barkovich AJ. An approach to MRI of metabolic disorders in children. J Neuroradiol. 2007;34(2):75–88.PubMedCrossRefGoogle Scholar
  2. 2.
    Barkovich AJ. A magnetic resonance approach to metabolic disorders in childhood. Rev Neurol. 2006;43(Suppl 1):S5–16.PubMedGoogle Scholar
  3. 3.
    Barkovich JA, Patay Z. Metabolic, toxic, and inflammatory brain disorders. In: Barkovich AJ, Raybaud C, editors. Pediatric neuroimaging. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2012.Google Scholar
  4. 4.
    Patay Z. Metabolic disorders. In: Tortori-Donati P, Rossi A, editors. Pediatric neuroradiology: brain, head, neck and spine. Berlin: Springer; 2009.Google Scholar
  5. 5.
    Vairo F, Vedolin L. The basis of inborn errors of metabolism for neuroradiologists. Top Magn Reson Imaging. 2011;22(5):209–14.PubMedCrossRefGoogle Scholar
  6. 6.
    Edwards MK. Imaging of metabolic diseases of the brain. Curr Opin Radiol. 1991;3(1):25–30.PubMedGoogle Scholar
  7. 7.
    Longo MG, Vairo F, Souza CF, Giugliani R, Vedolin LM. Brain imaging and genetic risk in the pediatric population, part 1: inherited metabolic diseases. Neuroimaging Clin N Am. 2015;25(1):31–51.PubMedCrossRefGoogle Scholar
  8. 8.
    Saudubray JM, Sedel F, Walter JH. Clinical approach to treatable inborn metabolic diseases: an introduction. J Inherit Metab Dis. 2006;29:261–74.PubMedCrossRefGoogle Scholar
  9. 9.
    Banerjee S, Bhat MA. Neuron-glial interactions in blood-brain barrier formation. Annu Rev Neurosci. 2007;30:235–58.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Morton DH, Strauss KA, Robinson DL, Puffenberger EG, Kelley RI. Diagnosis and treatment of maple syrup disease: a study of 36 patients. Pediatrics. 2002;109:999–1008.PubMedCrossRefGoogle Scholar
  11. 11.
    Funchal C, Gottfried C, De Almeida LM, Wajner M, Pessoa-Pureur R. Evidence that the branched-chain alpha-keto acids accumulating in maple syrup urine disease induce morphological alterations and death in cultured astrocytes from rat cerebral cortex. Glia. 2004;48:230–40.PubMedCrossRefGoogle Scholar
  12. 12.
    Riviello JJ, Rezvani I, DiGeorge AM, Foley CM. Cerebral edema causing death in children with maple syrup urine disease. J Pediatr. 1991;119:42–5.PubMedCrossRefGoogle Scholar
  13. 13.
    Brismar J, Aqeel A, Brismar G, Coates R, Gascon G, Ozand P. Maple syrup urine disease: findings on CT and MR scans of the brain in 10 infants. AJNR Am J Neuroradiol. 1990;11(6):1219–28.PubMedGoogle Scholar
  14. 14.
    Kar J, Nguyen FN, Moody SB. Pattern of restricted diffusion seen on magnetic resonance imaging in maple syrup urine disease. Pediatr Neurol. 2013;49(6):505–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Jain A, Jagdeesh K, Mane R, Singla S. Imaging in classic form of maple syrup urine disease: a rare metabolic central nervous system. J Clin Neonatol. 2013;2(2):98–100.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Indiran V, Gunaseelan RE. Neuroradiological findings in maple syrup urine disease. J Pediatr Neurosci. 2013;8(1):31–3.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Terek D, Koroglu O, Yalaz M, Gokben S, Calli C, Coker M, Kultursay N. Diagnostic tools of early brain disturbances in an asymptomatic neonate with maple syrup urine disease. Neuropediatrics. 2014;44(4):208–12.CrossRefGoogle Scholar
  18. 18.
    Parmar H, Sitoh YY, Ho L. Maple syrup urine disease: diffusion-weighted and diffusion-tensor magnetic resonance imaging findings. J Comput Assist Tomogr. 2004;28(1):93–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Righini A, Ramenghi LA, Parini R, Triulzi F, Mosca F. Water apparent diffusion coefficient and T2 changes in the acute stage of maple syrup urine disease: evidence of intramyelinic and vasogenic-interstitial edema. J Neuroimaging. 2003;13(2):162–5.PubMedCrossRefGoogle Scholar
  20. 20.
    Ha JS, Kim TK, Eun BL, Lee HS, Lee KY, Seol HY, Cha SH. Maple syrup urine disease encephalopathy: a follow-up study in the acute stage using diffusion-weighted MRI. Pediatr Radiol. 2004;34(2):163–6.PubMedCrossRefGoogle Scholar
  21. 21.
    Schonberger S, Schweiger B, Schwahn B, et al. Dysmyelination in the brain of adolescents and young adults with maple syrup urine disease. Mol Genet Metab. 2004;82:69–75.PubMedCrossRefGoogle Scholar
  22. 22.
    Klee D, Thimm E, Wittsack HJ, Schubert D, Primke R, Pentang G, Schaper J, Mödder U, Antoch A, Wendel U, Cohnen M. Structural white matter changes in adolescents and young adults with maple syrup urine disease. J Inherit Metab Dis. 2013;36(6):945–53.PubMedCrossRefGoogle Scholar
  23. 23.
    Ferraz-Filho JR, Floriano VH, Quirici MB, Albuquerque RP, Souza AS. Contribution of the diffusion-weighted MRI in the diagnosis and follow-up of encephalopathy caused by maple syrup urine disease in a full-term newborn. Arq Neuropsiquiatr. 2009;67(3A):719–23.PubMedCrossRefGoogle Scholar
  24. 24.
    Sato T, Muroya K, Hanakawa J, Asakura Y, Aida N, Tomiyasu M, Tajima G, Hasegawa T, Adachi M. Neonatal case of classic maple syrup urine disease: usefulness of (1) H-MRS in early diagnosis. Pediatr Int. 2014;56(1):112–5.PubMedCrossRefGoogle Scholar
  25. 25.
    Felber SR, Sperl W, Chemelli A, Murr C, Wendel U. Maple syrup urine disease: metabolic decompensation monitored by proton magnetic resonance imaging and spectroscopy. Ann Neurol. 1993;33(4):396–401.PubMedCrossRefGoogle Scholar
  26. 26.
    Hennermann JB. Clinical variability in glycine encephalopathy. Future Neurol. 2006;1:621–30.CrossRefGoogle Scholar
  27. 27.
    Whitehead MT, Fricke ST, Gropman AL. Structural brain defects. Clin Perinatol. 2015;42(2):337–61.PubMedCrossRefGoogle Scholar
  28. 28.
    Nicolasjilwan M, Ozer H, Wintermark M, Matsumoto J. Neonatal non-ketotic hyperglycinemia. J Neuroradiol. 2011;38(4):246–50.PubMedCrossRefGoogle Scholar
  29. 29.
    Culjat M, Benjak V, Dasovic-Buljevic A, Ozretic D, Fumic K, Acquaviva C, Baric I. Magnetic resonance findings in a neonate with nonketotic hyperglycinemia: case report. J Comput Assist Tomogr. 2010;34(5):762–5.PubMedCrossRefGoogle Scholar
  30. 30.
    Shah DK, Tingay DG, Fink AM, Hunt RW, Dargaville PA. Magnetic resonance imaging in neonatal nonketotic hyperglycinemia. Pediatr Neurol. 2005;33(1):50–2.PubMedCrossRefGoogle Scholar
  31. 31.
    Khong PL, Lam BC, Chung BH, Wong KY, Ooi GC. Diffusion-weighted MR imaging in neonatal nonketotic hyperglycinemia. AJNR Am J Neuroradiol. 2003;24(6):1181–3.PubMedGoogle Scholar
  32. 32.
    Mourmans J, Majoie CB, Barth PG, Duran M, Akkerman EM, Poll-THE BT. Sequential MR imaging changes in nonketotic hyperglycinemia. AJNR Am J Neuroradiol. 2006;27(1):208–11.PubMedGoogle Scholar
  33. 33.
    Dobyns WB. Agenesis of the corpus callosum and gyral malformations are frequent manifestations of nonketotic hyperglycinemia. Neurology. 1989;39:817–20.PubMedCrossRefGoogle Scholar
  34. 34.
    Gabis L, Parton P, Roche P, Lenn N, Tudorica A, Huang W. In vivo 1H magnetic resonance spectroscopic measurement of brain glycine levels in nonketotic hyperglycinemia. J Neuroimaging. 2001;11(2):209–11.PubMedCrossRefGoogle Scholar
  35. 35.
    Radmanesh A, Zaman T, Ghanaati H, Molaei S, Robertson RL, Zamani AA. Methylmalonic acidemia: brain imaging findings in 52 children and a review of the literature. Pediatr Radiol. 2008;38(10):1054–61.PubMedCrossRefGoogle Scholar
  36. 36.
    Baker EH, Sloan JL, Hauser NS, Gropman AL, Adams DR, Toro C, Manoli I, Venditti CP. MRI characteristics of globus pallidus infarcts in isolated methylmalonic acidemia. AJNR Am J Neuroradiol. 2015;36(1):194–201.PubMedCrossRefGoogle Scholar
  37. 37.
    Işikay S, Temel L, Keskin M. Imaging findings associated with methylmalonic aciduria. Pediatr Neurol. 2014;50(4):435–6.PubMedCrossRefGoogle Scholar
  38. 38.
    Andreula CF, De Blasi R, Carella A. CT and MR studies of methylmalonic acidemia. AJNR Am J Neuroradiol. 1991;12(3):410–2.PubMedGoogle Scholar
  39. 39.
    Ktena YP, Paul SM, Hauser NS, Sloan JL, Gropman A, Manoli I, Venditti CP. Delineating the spectrum of impairments, disabilities, and rehabilitation needs in methylmalonic acidemia (MMA). Am J Med Genet A. 2015;167A(9):2075–84.PubMedCrossRefGoogle Scholar
  40. 40.
    Tanpaiboon P. Methylmalonic acidemia (MMA). Mol Genet Metab. 2005;85:2–6.PubMedCrossRefGoogle Scholar
  41. 41.
    Sharrief AZ, Raffel J, Zee DS. Vitamin B(12) deficiency with bilateral globus pallidus abnormalities. Arch Neurol. 2012;69(6):769–72.PubMedCrossRefGoogle Scholar
  42. 42.
    Yeşildağ A, Ayata A, Baykal B, Koroglu M, Yildiz H, Oral B, Oktem F, Oyar O. Magnetic resonance imaging and diffusion-weighted imaging in methylmalonic acidemia. Acta Radiol. 2005;46(1):101–3.PubMedCrossRefGoogle Scholar
  43. 43.
    Michel SJ, Given CA, Robertson WC Jr. Imaging of the brain, including diffusion-weighted imaging in methylmalonic acidemia. Pediatr Radiol. 2004;34(7):580–2.PubMedCrossRefGoogle Scholar
  44. 44.
    Brismar J, Ozand PT. CT and MR of the brain in disorders of the propionate and methylmalonate metabolism. AJNR Am J Neuroradiol. 1994;15(8):1459–73.PubMedGoogle Scholar
  45. 45.
    Pearl PL, Vezina LG, Saneto RP, McCarter R, Molloy-Wells E, Heffron A, Trzcinski S, McClintock WM, Conry JA, Elling NJ, Goodkin HP, de Menezes MS, Ferri R, Gilles E, Kadom N, Gaillard WD. Cerebral MRI abnormalities associated with vigabatrin therapy. Epilepsia. 2009;50(2):184–94.PubMedCrossRefGoogle Scholar
  46. 46.
    Hegde AN, Mohan S, Lath N, Lim CC. Differential diagnosis for bilateral abnormalities of the basal ganglia and thalamus. Radiographics. 2011;31(1):5–30.PubMedCrossRefGoogle Scholar
  47. 47.
    Harting I, Seitz A, Geb S, Zwickler T, Porto L, Lindner M, Kölker S, Hörster F. Looking beyond the basal ganglia: the spectrum of MRI changes in methylmalonic acidaemia. J Inherit Metab Dis. 2008;31(3):368–78.PubMedCrossRefGoogle Scholar
  48. 48.
    Gao Y, Guan WY, Wang J, Zhang YZ, Li YH, Han LS. Fractional anisotropy for assessment of white matter tracts injury in methylmalonic acidemia. Chin Med J. 2009;122(8):945–9.PubMedGoogle Scholar
  49. 49.
    Takeuchi M, Harada M, Matsuzaki K, Hisaoka S, Nishitani H, Mori K. Magnetic resonance imaging and spectroscopy in a patient with treated methylmalonic acidemia. J Comput Assist Tomogr. 2003;27(4):547–51.PubMedCrossRefGoogle Scholar
  50. 50.
    Trinh BC, Melhem ER, Barker PB. Multi-slice proton MR spectroscopy and diffusion-weighted imaging in methylmalonic acidemia: report of two cases and review of the literature. AJNR Am J Neuroradiol. 2001;22(5):831–3.PubMedGoogle Scholar
  51. 51.
    Davison JE, Davies NP, Wilson M, Sun Y, Chakrapani A, McKiernan PJ, Walter JH, Gissen P, Peet AC. MR spectroscopy-based brain metabolite profiling in propionic acidaemia: metabolic changes in the basal ganglia during acute decompensation and effect of liver transplantation. Orphanet J Rare Dis. 2011;6:19.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Desai NK, Runge VM, Crisp DE, Crisp MB, Naul LG. Magnetic resonance imaging of the brain in glutaric acidemia type I: a review of the literature and a report of four new cases with attention to the basal ganglia and imaging technique. Investig Radiol. 2003;38(8):489–96.Google Scholar
  53. 53.
    Brismar J, Ozand PT. CT and MR of the brain in glutaric acidemia type I: a review of 59 published cases and a report of 5 new patients. AJNR Am J Neuroradiol. 1995;16(4):675–83.PubMedGoogle Scholar
  54. 54.
    Citton V, Burlina A, Baracchini C, Gallucci M, Catalucci A, Dal Pos S, Burlina A, Manara R. Apparent diffusion coefficient restriction in the white matter: going beyond acute brain territorial ischemia. Insights Imaging. 2012;3(2):155–64.PubMedCrossRefGoogle Scholar
  55. 55.
    Oguz KK, Ozturk A, Cila A. Diffusion-weighted MR imaging and MR spectroscopy in glutaric aciduria type 1. Neuroradiology. 2005;47(3):229–34.PubMedCrossRefGoogle Scholar
  56. 56.
    Elster AW. Glutaric aciduria type I: value of diffusion-weighted magnetic resonance imaging for diagnosing acute striatal necrosis. J Comput Assist Tomogr. 2004;28(1):98–100.PubMedCrossRefGoogle Scholar
  57. 57.
    Righini A, Fiori L, Parazzini C, Doneda C, Arrigoni F, Riva E, Triulzi F. Early prenatal magnetic resonance imaging of glutaric aciduria type 1: case report. J Comput Assist Tomogr. 2010;34(3):446–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Garbade SF, Greenberg CR, Demirkol M, Gökçay G, Ribes A, Campistol J, Burlina AB, Burgard P, Kölker S. Unravelling the complex MRI pattern in glutaric aciduria type I using statistical models-a cohort study in 180 patients. J Inherit Metab Dis. 2014;37(5):763–73.PubMedCrossRefGoogle Scholar
  59. 59.
    Osaka H, Kimura S, Nezu A, Yamazaki S, Saitoh K, Yamaguchi S. Chronic subdural hematoma, as an initial manifestation of glutaric aciduria type-1. Brain and Development. 1993;15(2):125–7.PubMedCrossRefGoogle Scholar
  60. 60.
    Cakmakci H, Pekcevik Y, Yis U, Unalp A, Kurul S. Diagnostic value of proton MR spectroscopy and diffusion-weighted MR imaging in childhood inherited neurometabolic brain diseases and review of the literature. Eur J Radiol. 2010;74(3):e161–71.PubMedCrossRefGoogle Scholar
  61. 61.
    Harting I, Boy N, Heringer J, Seitz A, Bendszus M, Pouwels PJ, Kölker S. (1)H-MRS in glutaric aciduria type 1: impact of biochemical phenotype and age on the cerebral accumulation of neurotoxic metabolites. J Inherit Metab Dis. 2015;38(5):829–38.PubMedCrossRefGoogle Scholar
  62. 62.
    Brusilow SW, Maestri NE. Urea cycle disorders: diagnosis, pathophysiology, and therapy. Adv Pediatr Infect Dis. 1996;43:127–70.Google Scholar
  63. 63.
    Yamanouchi H, Yokoo H, Yuhara Y, Maruyama K, Sasaki A, Hirato J, Nakazato Y. An autopsy case of ornithine transcarbamylase deficiency. Brain and Development. 2002;24(2):91–4.PubMedCrossRefGoogle Scholar
  64. 64.
    Harding BN, et al. Ornithine carbamoyl transferase deficiency: a neuropathological study. Eur J Pediatr. 1984;141(4):215–20.PubMedCrossRefGoogle Scholar
  65. 65.
    Kornfeld M, Woodfin BM, Papile L, Davis LE, Bernard LR. Neuropathology of ornithine carbamyl transferase deficiency. Acta Neuropathol. 1985;65(3–4):261–4.PubMedCrossRefGoogle Scholar
  66. 66.
    Dolman CL, Clasen RA, Dorovini-Zis K. Severe cerebral damage in ornithine transcarbamylase deficiency. Clin Neuropathol. 1988;7(1):101–5.Google Scholar
  67. 67.
    Pacheco-Colón I, Fricke S, VanMeter J, Gropman AL. Advances in urea cycle neuroimaging: Proceedings from the 4th International Symposium on urea cycle disorders, Barcelona, Spain, September 2013. Mol Genet Metab. 2014;113(1–2):118–26.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Gunz AC, Choong K, Potter M, Miller E. Magnetic resonance imaging findings and neurodevelopmental outcomes in neonates with urea-cycle defects. Int Med Case Rep J. 2013;6:41–8.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Bireley WR, Van Hove JL, Gallagher RC, Fenton LZ. Urea cycle disorders: brain MRI and neurological outcome. Pediatr Radiol. 2012;42(4):455–62.PubMedCrossRefGoogle Scholar
  70. 70.
    Gropman A. Brain imaging in urea cycle disorders. Mol Genet Metab. 2010;100(Suppl 1):S20–30.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Takanashi J, Barkovich AJ, Cheng SF, Weisiger K, Zlatunich CO, Mudge C, Rosenthal P, Tuchman M, Packman S. Brain MR imaging in neonatal hyperammonemic encephalopathy resulting from proximal urea cycle disorders. AJNR Am J Neuroradiol. 2003;24(6):1184–7.PubMedGoogle Scholar
  72. 72.
    White DA, Connor LT, Nardos B, Shimony JS, Archer R, Snyder AZ, Moinuddin A, Grange DK, Steiner RD, McKinstry RC. Age-related decline in the microstructural integrity of white matter in children with early- and continuously-treated PKU: a DTI study of the corpus callosum. Mol Genet Metab. 2010;99(Suppl 1):S41–6.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Anderson PJ, Leuzzi V. White matter pathology in phenylketonuria. Mol Genet Metab. 2010;99(Suppl 1):S3–9.PubMedCrossRefGoogle Scholar
  74. 74.
    Ding XQ, Fiehler J, Kohlschutter B, Wittkugel O, Grzyska U, Zeumer H, Ullrich K. MRI abnormalities in normal-appearing brain tissue of treated adult PKU patients. J Magn Reson Imaging. 2008;27:998–1004.PubMedCrossRefGoogle Scholar
  75. 75.
    Nardecchia F, Manti F, Chiarotti F, Carducci C, Carducci C, Leuzzi V. Neurocognitive and neuroimaging outcome of early treated young adult PKU patients: a longitudinal study. Mol Genet Metab. 2015;115(2–3):84–90.PubMedCrossRefGoogle Scholar
  76. 76.
    Leuzzi V, Bianchi MC, Tosetti M, Carducci CL, Carducci CA, Antonozzi I. Clinical significance of brain phenylalanine concentration assessed by in vivo proton magnetic resonance spectroscopy in phenylketonuria. J Inherit Metab Dis. 2000;23(6):563–70.PubMedCrossRefGoogle Scholar
  77. 77.
    Barkovich AJ, Peck WW. MR of Zellweger syndrome. AJNR Am J Neuroradiol. 1997;18(6):1163–70.PubMedGoogle Scholar
  78. 78.
    van der Knaap MS, Valk J. The MR spectrum of peroxisomal disorders. Neuroradiology. 1991;33(1):30–7.PubMedCrossRefGoogle Scholar
  79. 79.
    Kerrigan JF, Aleck KA, Tarby TJ. Fumaric aciduria: clinical and imaging features. Ann Neurol. 2000;47(5):583–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Bruhn H, Kruse B, Korenke CG, Hanefeld F, Hanicke W, Merboldt KD, Frahm J. Proton NMR spectroscopy of cerebral metabolic alterations in infantile peroxisomal disorders. J Comput Assist Tomogr. 1992;16(3):335–44.PubMedCrossRefGoogle Scholar
  81. 81.
    Cecil KM, Lindquist DM. Leukodystrophies. In: Bluml S, Panigrahy A, editors. MR spectroscopy of pediatric brain disorders. New York: Springer; 2013. p. 105–22.CrossRefGoogle Scholar
  82. 82.
    Kim JH, Kim HJ. Childhood X-linked adrenoleukodystrophy: clinical-pathologic overview and MR imaging manifestations at initial evaluation and follow-up. Radiographics. 2005;25(3):619–31.PubMedCrossRefGoogle Scholar
  83. 83.
    Moser HW. Adrenoleukodystrophy: phenotype, genetics, pathogenesis and therapy. Brain. 1997;120:1485–508.PubMedCrossRefGoogle Scholar
  84. 84.
    Moser HW, Loes DJ, Melhem ER, Raymond GV, Bezman L, Cox CS, Lu SE. X-linked adrenoleukodystrophy: overview and prognosis as a function of age and brain magnetic resonance imaging abnormality. A study involving 372 patients. Neuropediatrics. 2000;31(5):227–39.PubMedCrossRefGoogle Scholar
  85. 85.
    Berger J, Forss-Petter S, Eichler FS. Pathophysiology of X-linked adrenoleukodystrophy. Biochimie. 2014;98:135–42.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Barkovich AJ, Ferriero DM, Bass N, Boyer R. Involvement of the pontomedullary corticospinal tracts: a useful finding in the diagnosis of X-linked adrenoleukodystrophy. AJNR Am J Neuroradiol. 1997;18(1):95–100.PubMedGoogle Scholar
  87. 87.
    Melhem ER, Loes DJ, Georgiades CS, Raymond GV, Moser HW. X-linked adrenoleukodystrophy: the role of contrast-enhanced MR imaging in predicting disease progression. AJNR Am J Neuroradiol. 2000;21(5):839–44.PubMedGoogle Scholar
  88. 88.
    Melhem ER, Barker PB, Raymond GV, Moser HW. X-linked adrenoleukodystrophy in children: review of genetic, clinical, and MR imaging characteristics. AJR Am J Roentgenol. 1999;173(6):1575–81.PubMedCrossRefGoogle Scholar
  89. 89.
    Loes DJ, Hite S, Moser H, Stillman AE, Shapiro E, Lockman L, Latchaw RE, Krivit W. Adrenoleukodystrophy: a scoring method for brain MR observations. AJNR Am J Neuroradiol. 1994;15(9):1761–6.PubMedGoogle Scholar
  90. 90.
    Eichler FS, Barker PB, Cox C, Edwin D, Ulug AM, Moser HM, Raymond GV. Proton MR spectroscopic imaging predicts lesion progression on MRI in X-linked adrenoleukodystrophy. Neurology. 2002;58:901–7.PubMedCrossRefGoogle Scholar
  91. 91.
    ter Rahe BS, Majoie CB, Akkerman EM, den Heeten GT, Poll-The BT, Barth PG. Peroxisomal biogenesis disorder: comparison of conventional MR imaging with diffusion-weighted and diffusion-tensor imaging findings. AJNR Am J Neuroradiol. 2004;25(6):1022–7.PubMedGoogle Scholar
  92. 92.
    van der Voorn JP, Pouwels PJ, Powers JM, Kamphorst W, Martin JJ, Troost D, Spreeuwenberg MD, Barkhof F, van der Knaap MS. Correlating quantitative MR imaging with histopathology in X-linked adrenoleukodystrophy. AJNR Am J Neuroradiol. 2011;32(3):481–9.PubMedCrossRefGoogle Scholar
  93. 93.
    Schneider JF, Il’yasov KA, Boltshauser E, Hennig J, Martin E. Diffusion tensor imaging in cases of adrenoleukodystrophy: preliminary experience as a marker for early demyelination? AJNR Am J Neuroradiol. 2003;24(5):819–24.PubMedGoogle Scholar
  94. 94.
    Friedman SD, Shaw DW, Ishak G, Gropman AL, Saneto RP. The use of neuroimaging in the diagnosis of mitochondrial disease. Dev Disabil Res Rev. 2010;16:129–35.PubMedCrossRefGoogle Scholar
  95. 95.
    Saneto RP, Friedman SD, Shaw DW. Neuroimaging of mitochondrial disease. Mitochondrion. 2008;8(5–6):396–413.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Bianchi MC, Sgandurra G, Tosetti M, Battini R, Cioni G. Brain magnetic resonance in the diagnostic evaluation of mitochondrial encephalopathies. Biosci Rep. 2007;27(1–3):69–85.PubMedCrossRefGoogle Scholar
  97. 97.
    Bianchi MC, Tosetti M, Battini R, Manca ML, Mancuso M, Cioni G, Canapicchi R, Siciliano G. Proton MR spectroscopy of mitochondrial diseases: analysis of brain metabolic abnormalities and their possible diagnostic relevance. Am J Neuroradiol. 2003;24:1958–66.PubMedGoogle Scholar
  98. 98.
    Haas R, Dietrich R. Neuroimaging of mitochondrial disorders. Mitochondrion. 2004;4:471–90.PubMedCrossRefGoogle Scholar
  99. 99.
    Ishak GE, Poliakov AV, Poliachik SL, Saneto RP, Novotny EJ Jr, McDaniel S, Ojemann JG, Shaw DW, Friedman SD. Tract-based spatial statistical analysis of diffusion tensor imaging in pediatric patients with mitochondrial disease: widespread reduction in fractional anisotropy of white matter tracts. AJNR Am J Neuroradiol. 2012;33(9):1726–30.PubMedCrossRefGoogle Scholar
  100. 100.
    Lin DD, Crawford TO, Barker PB. Proton MR spectroscopy in the diagnostic evaluation of suspected mitochondrial disease. AJNR Am J Neuroradiol. 2003;24:33–41.PubMedGoogle Scholar
  101. 101.
    Barkovich AJ, Good WV, Koch TK, Berg BO. Mitochondrial disorders: analysis of their clinical and imaging characteristics. AJNR Am J Neuroradiol. 1993;14(5):1119–37.PubMedGoogle Scholar
  102. 102.
    Dinopoulos A, Cecil KM, Schapiro MB, Papadimitriou A, Hadjigeorgiou GM, Wong B, deGrauw T, Egelhoff JC. Brain MRI and proton MRS findings in infants and children with respiratory chain defects. Neuropediatrics. 2005;36:290–301.PubMedCrossRefGoogle Scholar
  103. 103.
    Gerards M, Sallevelt SC, Smeets HJ. Leigh syndrome: resolving the clinical and genetic heterogeneity paves the way for treatment options. Mol Genet Metab. 2016;117:300–12.PubMedCrossRefGoogle Scholar
  104. 104.
    Baertling F, Rodenburg RJ, Schaper J, Smeitink JA, Koopman WJ, Mayatepek E, Morava E, Distelmaier F. A guide to diagnosis and treatment of Leigh syndrome. J Neurol Neurosurg Psychiatry. 2014;85(3):257–65.PubMedCrossRefGoogle Scholar
  105. 105.
    Medina L, Chi TL, DeVivo DC, Hilal SK. MR findings in patients with subacute necrotizing encephalomyelopathy (Leigh syndrome): correlation with biochemical defect. AJR Am J Roentgenol. 1990;154(6):1269–74.PubMedCrossRefGoogle Scholar
  106. 106.
    Ruhoy IS, Saneto RP. The genetics of Leigh syndrome and its implications for clinical practice and risk management. Appl Clin Genet. 2014;7:221–34.PubMedPubMedCentralGoogle Scholar
  107. 107.
    Rahman S, Blok RD, Dahl HH, Danks DM, Kirby DM, Chow CW, Christodoulou J, Thorburn DR. Leigh syndrome: clinical features and biochemical and DNA abnormalities. Ann Neurol. 1996;39(3):343–51.PubMedCrossRefGoogle Scholar
  108. 108.
    Parikh S, Goldstein A, Koenig MK, Scaglia F, Enns GM, Saneto R, Anselm I, Cohan BH, Falk MJ, Greene C, Gropman AL, Haas R, Hirano M, Morgan P, Sims K, Tarnopolsky MR, Van Hove L, Wolfe L, DiMauro S. Diagnosis and management of mitochondrial disease: a consensus statement from the Mitochondrial Medicine Society. Genet Med. 2015;17(9):689–701.PubMedCrossRefGoogle Scholar
  109. 109.
    Arii J, Tanabe Y. Leigh syndrome: serial MR imaging and clinical follow-up. AJNR Am J Neuroradiol. 2000;21:1502–9.PubMedGoogle Scholar
  110. 110.
    Whitehead MT, Lee B, Gropman A. Lesional perfusion abnormalities in Leigh disease demonstrated by arterial spin labeling correlate with disease activity. Pediatr Radiol. 2016;46(9):1309–16.PubMedCrossRefGoogle Scholar
  111. 111.
    Hirano M, Ricci E, Koenigsberger MR, Defendini R, Pavlakis SG, DeVivo DC, DiMauro S, Rowland LP. Melas: an original case and clinical criteria for diagnosis. Neuromuscul Disord. 1992;2(2):125–35.PubMedCrossRefGoogle Scholar
  112. 112.
    Yoshida T, Ouchi A, Miura D, Shimoji K, Kinjo K, Sueyoshi T, Jonosono M, Rajput V. MELAS and reversible vasoconstriction of the major cerebral arteries. Intern Med. 2013;52(12):1389–92.PubMedCrossRefGoogle Scholar
  113. 113.
    Pauli W, Zarzycki A, Krzyształowski A, Walecka A. CT and MRI imaging of the brain in MELAS syndrome. Pol J Radiol. 2013;78(3):61–5.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Abe K, Yoshimura H, Tanaka H, Fujita N, Hikita T, Sakoda S. Comparison of conventional and diffusion-weighted MRI and proton MR spectroscopy in patients with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like events. Neuroradiology. 2004;46(2):113–7.PubMedCrossRefGoogle Scholar
  115. 115.
    Brockmann K, Finsterbusch J, Schara U, Wilichowski E, Frahm J, Hanefeld F. Stroke-like pattern in DTI and MRS of childhood mitochondrial leukoencephalopathy. Neuroradiology. 2004;46:267–71.PubMedCrossRefGoogle Scholar
  116. 116.
    Wilichowski E, Pouwels PJ, Frahm J, Hanefeld F. Quantitative proton magnetic resonance spectroscopy of cerebral metabolic disturbances in patients with MELAS. Neuropediatrics. 1999;30(5):256–63.PubMedCrossRefGoogle Scholar
  117. 117.
    Moroni I, Bugiani M, Bizzi A, Castelli G, Lamantea E, Uziel G. Cerebral white matter involvement in children with mitochondrial encephalopathies. Neuropediatrics. 2002;33(2):79–85.PubMedCrossRefGoogle Scholar
  118. 118.
    Weinstock A, Giglio P, Cohen ME, Bakshi R, Januario J, Balos L. Diffuse magnetic resonance imaging white-matter changes in a 15-year-old boy with mitochondrial encephalomyopathy. J Child Neurol. 2002;17(1):47–9.PubMedCrossRefGoogle Scholar
  119. 119.
    Burgeois M, Goutieres F, Chretien D, Rustin P, Munnich A, Aicardi J. Deficiency in complex II of the respiratory chain, presenting as a leukodystrophy in two sisters with Leigh syndrome. Brain and Development. 1992;14:404–8.PubMedCrossRefGoogle Scholar
  120. 120.
    Barnerias C, Saudubray JM, Touati G, De Lonlay P, Dulac O, Ponsot G, Marsac C, Brivet M, Desguerre I. Pyruvate dehydrogenase complex deficiency: four neurological phenotypes with differing pathogenesis. Dev Med Child Neurol. 2010;52(2):e1–9.PubMedCrossRefGoogle Scholar
  121. 121.
    Ah Mew N, Loewenstein JB, Kadom N, Lichter-Konecki U, Gropman AL, Martin JM, Vanderver A. MRI features of 4 female patients with pyruvate dehydrogenase E1 alpha deficiency. Pediatr Neurol. 2011;45(1):57–9.PubMedCrossRefGoogle Scholar
  122. 122.
    Cross JH, Connelly A, Gadian DG, Kendall BE, Brown GK, Brown RM, Leonard JV. Clinical diversity of pyruvate dehydrogenase deficiency. Pediatr Neurol. 1994;10(4):276–83.PubMedCrossRefGoogle Scholar
  123. 123.
    Sharma R, Sharrard MJ, Connolly DJ, Mordekar SR. Unilateral periventricular leukomalacia in association with pyruvate dehydrogenase deficiency. Dev Med Child Neurol. 2012;54(5):469–71.PubMedCrossRefGoogle Scholar
  124. 124.
    Nissenkorn A, Michelson M, Ben-Zeev B, Lerman-Sagie T. Inborn errors of metabolism: a cause of abnormal brain development. Neurology. 2001;56(10):1265–72.PubMedCrossRefGoogle Scholar
  125. 125.
    Prasad C, Rupar T, Prasad AN. Pyruvate dehydrogenase deficiency and epilepsy. Brain and Development. 2011;33(10):856–65.PubMedCrossRefGoogle Scholar
  126. 126.
    Shevell MI, Matthews PM, Scriver CR, Brown RM, Otero LJ, Legris M, Brown GK, Arnold DL. Cerebral dysgenesis and lactic acidemia: an MRI/MRS phenotype associated with pyruvate dehydrogenase deficiency. Pediatr Neurol. 1994;11(3):224–9.PubMedCrossRefGoogle Scholar
  127. 127.
    Kohlschütter A, Schulz A. Towards understanding the neuronal ceroid lipofuscinoses. Brain and Development. 2009;31(7):499–502.PubMedCrossRefGoogle Scholar
  128. 128.
    Arsov T, Smith KR, Damiano J, Franceschetti S, Canafoglia L, Bromhead CJ, Andermann E, Vears DF, Cossette P, Rajagopalan S, McDougall A, Sofia V, Farrell M, Aguglia U, Zini A, Meletti S, Morbin M, Mullen S, Andermann F, Mole SE, Bahlo M, Berkovic SF. Kufs disease, the major adult form of neuronal ceroid lipofuscinosis, caused by mutations in CLN6. Am J Hum Genet. 2011;88(5):566–73.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Jadav RH, Sinha S, Yasha TC, Aravinda H, Rao S, Bindu PS, Satishchandra P. Magnetic resonance imaging in neuronal ceroid lipofuscinosis and its subtypes. Neuroradiol J. 2012;25(6):755–61.PubMedCrossRefGoogle Scholar
  130. 130.
    Topçu M, Tan H, Yalnizoğlu D, Usubütün A, Saatçi I, Aynaci M, Anlar B, Topaloğlu H, Turanli G, Köse G, Aysun S. Evaluation of 36 patients from Turkey with neuronal ceroid lipofuscinosis: clinical, neurophysiological, neuroradiological and histopathologic studies. Turk J Pediatr. 2004;46(1):1–10.PubMedGoogle Scholar
  131. 131.
    D’Incerti L. MRI in neuronal ceroid lipofuscinosis. Neurol Sci. 2000;21(3 Suppl):S71–3.PubMedCrossRefGoogle Scholar
  132. 132.
    Autti T, Joensuu R, Aberg L. Decreased T2 signal in the thalami may be a sign of lysosomal storage disease. Neuroradiology. 2007;49(7):571–8.PubMedCrossRefGoogle Scholar
  133. 133.
    Autti T, Raininko R, Santavuori P, Vanhanen SL, Poutanen VP, Haltia M. MRI of neuronal ceroid lipofuscinosis. II. Postmortem MRI and histopathological study of the brain in 16 cases of neuronal ceroid lipofuscinosis of juvenile or late infantile type. Neuroradiology. 1997;39(5):371–7.PubMedCrossRefGoogle Scholar
  134. 134.
    Autti T, Raininko R, Vanhanen SL, Santavuori P. MRI of neuronal ceroid lipofuscinosis. I. Cranial MRI of 30 patients with juvenile neuronal ceroid lipofuscinosis. Neuroradiology. 1996;38(5):476–82.PubMedCrossRefGoogle Scholar
  135. 135.
    Levin SW, Baker EH, Gropman A, Quezado Z, Miao N, Zhang Z, Jollands A, Di Capua M, Caruso R, Mukherjee AB. Subdural fluid collections in patients with infantile neuronal ceroid lipofuscinosis. Arch Neurol. 2009;66(12):1567–71.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Baker EH, Levin SW, Zhang Z, Mukherjee AB. Evaluation of disease progression in INCL by MR spectroscopy. Ann Clin Transl Neurol. 2015;2(8):797–809.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Brockmann K, Pouwels PJ, Christen HJ, Frahm J, Hanefeld F. Localized proton magnetic resonance spectroscopy of cerebral metabolic disturbances in children with neuronal ceroid lipofuscinosis. Neuropediatrics. 1996;27(5):242–8.PubMedCrossRefGoogle Scholar
  138. 138.
    Wenger DA. Krabbe disease: globoid cell leukodystrophy. 2003. In: Rosenberg RN, Prusiner SB, DiMauro S, Barchi RL, Nestler EJ, Eds. The molecular and genetic basis of neurologic and psychiatric disease. Philadelphia: Butterworth-Heinemann, 255-261.Google Scholar
  139. 139.
    Abdelhalim AN, Alberico RA, Barczykowski AL, Duffner PK. Patterns of magnetic resonance imaging abnormalities in symptomatic patients with Krabbe disease correspond to phenotype. Pediatr Neurol. 2014;50(2):127–34.PubMedCrossRefGoogle Scholar
  140. 140.
    Romano A, De Simone R, Fasoli F, Ferrante M, Cipriani V, Fantozzi LM, Bozzoa A. Selective white matter involvement in a patient with late onset Krabbe disease: MR, MR spectroscopy, and diffusion tensor study. J Neuroimaging. 2009;19(2):191–3.PubMedCrossRefGoogle Scholar
  141. 141.
    Wang C, Melberg A, Melberg A, Weis J, Månsson JE, Raininko R. The earliest MR imaging and proton MR spectroscopy abnormalities in adult-onset Krabbe disease. Acta Neurol Scand. 2007;116(4):268–72.PubMedCrossRefGoogle Scholar
  142. 142.
    Henderson RD, MacMillan JC, Bradfield JM. Adult onset Krabbe disease may mimic motor neurone disease. J Clin Neurosci. 2003;10(5):638–9.PubMedCrossRefGoogle Scholar
  143. 143.
    Gupta A, Poe MD, Styner MA, Panigrahy A, Escolar ML. Regional differences in fiber tractography predict neurodevelopmental outcomes in neonates with infantile Krabbe disease. Neuroimage Clin. 2014;7:792–8.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Poretti A, Meoded A, Bunge M, Fatemi A, Barrette P, Huisman TA, Salman MS. Novel diffusion tensor imaging findings in Krabbe disease. Eur J Paediatr Neurol. 2014;18(2):150–6.PubMedCrossRefGoogle Scholar
  145. 145.
    Escolar ML, Poe MD, Smith JK, Gilmore JH, Kurtzberg J, Lin W, Styner M. Diffusion tensor imaging detects abnormalities in the corticospinal tracts of neonates with infantile Krabbe disease. AJNR Am J Neuroradiol. 2009;30(5):1017–21.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Guo AC, Petreall JR, Krutzberg J, Provenzale JM. Evaluation of white matter anisotropy in Krabbe disease with diffusion tensor MR imaging: initial experience. Radiology. 2001;218(3):809–15.PubMedCrossRefGoogle Scholar
  147. 147.
    Zuccoli G, Narayanan S, Panigrahy A, Poe MD, Escolar ML. Midbrain morphology reflects extent of brain damage in Krabbe disease. Neuroradiology. 2015;57(7):739–45.PubMedCrossRefGoogle Scholar
  148. 148.
    Loes DJ, Peters C, Krivit W. Globoid cell leukodystrophy: distinguishing early-onset from late-onset disease using a brain MR imaging scoring method. AJNR Am J Neuroradiol. 1999;20(2):316–23.PubMedGoogle Scholar
  149. 149.
    Livingston JH, Stivaros S, van der Knaap MS, Crow YJ. Recognizable phenotypes associated with intracranial calcification. Dev Med Child Neurol. 2013;55(1):46–57.PubMedCrossRefGoogle Scholar
  150. 150.
    Livingston JH, Graziano C, Pysden K, Crow YJ, Mordekar SR, Moroni I, Uziel G. Intracranial calcification in early infantile Krabbe disease: nothing new under the sun. Dev Med Child Neurol. 2012;54(4):376–9.PubMedCrossRefGoogle Scholar
  151. 151.
    Brockmann K, Dechent P, Wilken B, Rusch O, Frahm J, Hanefeld F. Proton MRS profile of cerebral metabolic abnormalities in Krabbe disease. Neurology. 2003;60(5):819–25.PubMedCrossRefGoogle Scholar
  152. 152.
    Zarifi MK, Tzika AA, Astrakas LG, Poussaint TY, Anthony DC, Darras BT. Magnetic resonance spectroscopy and magnetic resonance imaging findings in Krabbe’s disease. J Child Neurol. 2001;16:522–6.PubMedCrossRefGoogle Scholar
  153. 153.
    van Rappard DF, Boelens JJ, Wolf NI. Metachromatic leukodystrophy: disease spectrum and approaches for treatment. Best Pract Res Clin Endocrinol Metab. 2015;29(2):261–73.PubMedCrossRefGoogle Scholar
  154. 154.
    Gieselmann V. Metachromatic leukodystrophy: genetics, pathogenesis and therapeutic options. Acta Paediatr Suppl. 2008;97:15–21.CrossRefGoogle Scholar
  155. 155.
    Groeschel S, Dali C, Class P, Böhringer J, Duno M, Krarup C, Kehrer C, Wilke M, Krägeloh-Mann I. Cerebral gray and white matter changes and clinical course in metachromatic leukodystrophy. Neurology. 2012;79(16):1662–70.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Kim TS, Kim IO, Kim WS, Choi YS, Lee JY, Kim OW, Yeon KM, Kim KJ, Hwang YS. MR of childhood metachromatic leukodystrophy. AJNR Am J Neuroradiol. 1997;18(4):733–8.PubMedGoogle Scholar
  157. 157.
    Faerber EN, Melvin J, Smergel EM. MRI appearances of metachromatic leukodystrophy. Pediatr Radiol. 1999;29(9):669–72.PubMedCrossRefGoogle Scholar
  158. 158.
    van der Voorn JP, Pouwels PJ, Kamphorst W, Powers JM, Lammens M, Barkhof F, van der Knaap MS. Histopathologic correlates of radial stripes on MR images in lysosomal storage disorders. AJNR Am J Neuroradiol. 2005;26(3):442–6.PubMedGoogle Scholar
  159. 159.
    Oguz KK, Anlar B, Senbil N, Cila A. Diffusion-weighted imaging findings in juvenile metachromatic leukodystrophy. Neuropediatrics. 2004;35(5):279–82.PubMedCrossRefGoogle Scholar
  160. 160.
    Kruse B, Hanefeld F, Christen HJ, Bruhn H, Michaelis T, Hänicke W, Frahm J. Alterations of brain metabolites in metachromatic leukodystrophy as detected by localized proton magnetic resonance spectroscopy in vivo. J Neurol. 1993;241(2):68–74.PubMedCrossRefGoogle Scholar
  161. 161.
    Sener RN. Metachromatic leukodystrophy. Diffusion MR imaging and proton MR spectroscopy. Acta Radiol. 2003;44(4):440–3.PubMedGoogle Scholar
  162. 162.
    Desnick RJ, Kaback MM. Advances in genetics: Tay-Sachs disease, Advances in genetics series, vol. 44. San Diego: Academic Press; 2001.Google Scholar
  163. 163.
    Maegawa GH, Stockley T, Tropak M, Banwell B, Blaser S, Kok F, Giugliani R, Mahuran D, Clarke JT. The natural history of juvenile or subacute GM2 gangliosidosis: 21 new cases and literature review of 134 previously reported. Pediatrics. 2006;118(5):e1550–62.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Aydin K, Bakir B, Tatli B, Terzibasioglu E, Ozmen M. Proton MR spectroscopy in three children with Tay-Sachs disease. Pediatr Radiol. 2005;35(11):1081–5.PubMedCrossRefGoogle Scholar
  165. 165.
    Imamura A, Miyajima H, Ito R, Orii KO. Serial MR imaging and 1H-MR spectroscopy in monozygotic twins with Tay-Sachs disease. Neuropediatrics. 2008;39(5):259–63.PubMedCrossRefGoogle Scholar
  166. 166.
    Migdalska-Richards A, Schapira AH. The relationship between glucocerebrosidase mutations and Parkinson disease. J Neurochem. 2016;139(Suppl 1):77–90.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Krishna SH, McKinney AM, Lucato LT. Congenital genetic inborn errors of metabolism presenting as an adult or persisting into adulthood: neuroimaging in the more common or recognizable disorders. Semin Ultrasound CT MR. 2014;35(2):160–91.PubMedCrossRefGoogle Scholar
  168. 168.
    Abdel Razek AA, Abd El-Gaber N, Abdalla A, Fathy A, Azab A, Rahman AA. Apparent diffusion coefficient vale of the brain in patients with Gaucher’s disease type II and type III. Neuroradiology. 2009;51(11):773–9.PubMedCrossRefGoogle Scholar
  169. 169.
    Davies EH, Seunarine KK, Banks T, Clark CA, Vellodi A. Brain white matter abnormalities in paediatric Gaucher Type I and Type III using diffusion tensor imaging. J Inherit Metab Dis. 2011;34(2):549–53.PubMedCrossRefGoogle Scholar
  170. 170.
    Mercimek-Mahmutoglu S, Gruber S, Rolfs A, Stadlbauer A, Woeber C, Kurnik P, Voigtlaender T, Moser E, Stoeckler-Ipsiroglu S. Neurological and brain MRS findings in patients with Gaucher disease type 1. Mol Genet Metab. 2007;91(4):390–5.PubMedCrossRefGoogle Scholar
  171. 171.
    Yanjanin NM, Vélez JI, Gropman A, King K, Bianconi SE, Conley SK, Brewer CC, Solomon B, Pavan WJ, Arcos-Burgos M, Patterson MC, Porter FD. Linear clinical progression, independent of age of onset, in Niemann-Pick disease, type C. Am J Med Genet B Neuropsychiatr Genet. 2010;153B(1):132–40.PubMedPubMedCentralGoogle Scholar
  172. 172.
    Huang JY, Peng SF, Yang CC, Yen KY, Tzen KY, Yen RF. Neuroimaging findings in a brain with Niemann-Pick type C disease. J Formos Med Assoc. 2011;110(8):537–42.PubMedCrossRefGoogle Scholar
  173. 173.
    Walterfang M, Fahey M, Desmond P, Wood A, Seal ML, Steward C, Adamson C, Kokkinos C, Fietz M, Velakoulis D. White and gray matter alterations in adults with Niemann-Pick disease type C: a cross-sectional study. Neurology. 2010;75(1):49–56.PubMedCrossRefGoogle Scholar
  174. 174.
    Lee R, Apkarian K, Jung ES, Yanjanin N, Yoshida S, Mori S, Park J, Gropman A, Baker EH, Porter FD. Corpus callosum diffusion tensor imaging and volume measures are associated with disease severity in pediatric Niemann-Pick disease type C1. Pediatr Neurol. 2014;51(5):669–74.e5.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Rieger D, Auerbach S, Robinson P, Gropman A. Neuroimaging of lipid storage disorders. Dev Disabil Res Rev. 2013;17(3):269–82.PubMedCrossRefGoogle Scholar
  176. 176.
    Takanashi J, Hayashi M, Yuasa S, Satoh H, Terada H. Hypoyelination in I-cell disease; MRI, MR spectroscopy and neuropathological correlation. Brain and Development. 2012;34(9):780–3.PubMedCrossRefGoogle Scholar
  177. 177.
    Altarescu G, Sun M, Moore DF, Smith JA, Wiggs EA, Solomon BI, Patronas NJ, Frei KP, Gupta S, Kaneski CR, Quarrell OW, Slaugenhaupt SA, Goldin E, Schiffmann R. The neurogenetics of mucolipidosis type IV. Neurology. 2002;59(3):306–13.PubMedCrossRefGoogle Scholar
  178. 178.
    Frei KP, Patronas NJ, Crutchfield KE, Altarescu G, Schiffmann R. Mucolipidosis type IV: characteristic MRI findings. Neurology. 1998;51(2):565–9.PubMedCrossRefGoogle Scholar
  179. 179.
    Geer JS, Skinner SA, Goldin E, Holden KR. Mucolipidosis type IV: a subtle pediatric neurodegenerative disorder. Pediatr Neurol. 2010;42(3):223–6.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Breningstall GN, Tubman DE. Magnetic resonance imaging in a patient with I-cell disease. Clin Neurol Neurosurg. 1994;96(2):161–3.PubMedCrossRefGoogle Scholar
  181. 181.
    Wakabayashi K, Gustafson AM, Sidransky E, Goldin E. Mucolipidosis type IV: an update. Mol Genet Metab. 2011;104(3):206–13.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Schiffmann R, Mayfield J, Swift C, Nestrasil I. Quantitative neuroimaging in mucolipidosis type IV. Mol Genet Metab. 2014;111(2):147–51.PubMedCrossRefGoogle Scholar
  183. 183.
    Bonavita S, Virta A, Jeffries N, Goldin E, Tedeschi G, Schiffmann R. Diffuse neuroaxonal involvement in mucolipidosis IV as assessed by proton magnetic resonance spectroscopic imaging. J Child Neurol. 2003;18:443–9.PubMedCrossRefGoogle Scholar
  184. 184.
    Bonnefont JP, Djouadi F, Prip-Buus C, Gobin S, Munnich A, Bastin J. Carnitine palmitoyltransferases 1 and 2: biochemical, molecular and medical aspects. Genomics. 1994;24(1):195–7.CrossRefGoogle Scholar
  185. 185.
    Gellera C, Verderio E, Floridia G, Finocchiaro G, Montermini L, Cavadini P, Zuffardi O, Taroni F. Assignment of the human carnitine palmitoyltransferase II gene (CPT1) to chromosome 1p32. Genomics. 1994;24(1):195–7.PubMedCrossRefGoogle Scholar
  186. 186.
    Elpeleg ON, Hammerman C, Saada A, Shaag A, Golzand E, Hochner-Celnikier D, Berger I, Nadjari M. Antenatal presentation of carnitine palmitoyltransferase II deficiency. Am J Med Genet. 2001;102:183–7.PubMedCrossRefGoogle Scholar
  187. 187.
    Isackson PJ, Bennett MJ, Lichter-Konecki U, Willis M, Nyhan WL, Sutton VR, Tein I, Vladutiu GD. CPT2 gene mutations resulting in lethal neonatal or severe infantile carnitine palmitoyltransferase II deficiency. Mol Genet Metab. 2008;94:422–7.PubMedCrossRefGoogle Scholar
  188. 188.
    North KN, Hoppel CL, De Girolami U, Kozakewich HP, Korson MS. Lethal neonatal deficiency of carnitine palmitoyltransferase II associated with dysgenesis of the brain and kidneys. J Pediatr. 1995;127:414–20.PubMedCrossRefGoogle Scholar
  189. 189.
    Pierce MR, Pridjian G, Morrison S, Pickoff AS. Fatal carnitine palmitoyltransferase II deficiency in a newborn: new phenotypic features. Clin Pediatr (Phila). 1999;38:13–20.CrossRefGoogle Scholar
  190. 190.
    Ferreira CR, Silber MH, Chang T, Murnick JG, Kirmse B. Cerebral lipid accumulation detected by MRS in a child with carnitine palmitoyltransferase 2 deficiency: a case report and review of the literature on genetic etiologies of lipid peaks on MRS. JIMD Rep. 2016;28:69–74.PubMedCrossRefGoogle Scholar
  191. 191.
    Bouchireb K, Teychene AM, Rigal O, de Lonlay P, Valayannopoulos V, Gaudelus J, Sellier N, Bonnefont JP, Brivet M, de Pontual L. Post-mortem MRI reveals CPT2 deficiency after sudden infant death. Eur J Pediatr. 2010;169(12):1561–3.PubMedCrossRefGoogle Scholar
  192. 192.
    Seto T, Kono K, Morimoto K, Inoue Y, Shintaku H, Hattori H, Matsuoka O, Yamano T, Tanaka A. Brain magnetic resonance imaging in 23 patients with mucopolysaccharidoses and the effect of bone marrow transplantation. Ann Neurol. 2001;50(1):79–92.PubMedCrossRefGoogle Scholar
  193. 193.
    Lee C, Dineen TE, Brack M, Kirsch JE, Runge VM. The mucopolysaccharidoses: characterization by cranial MR imaging. AJNR Am J Neuroradiol. 1993;14(6):1285–92.PubMedGoogle Scholar
  194. 194.
    Zafeiriou DI, Batzios SP. Brain and spinal MR imaging findings in mucopolysaccharidoses: a review. AJNR Am J Neuroradiol. 2013;34(1):5–13.PubMedCrossRefGoogle Scholar
  195. 195.
    Rasalkar DD, Chu WCW, Hui J, Chu C-M, Paunipager BK, Li C-K. Pictorial review of mucopolysaccharidosis with emphasis on MRI features of brain and spine. Br J Radiol. 2011;84(1001):469–77. The British Institute of Radiology.PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Calleja Gero ML, González Gutiérrez-Solana L, López Marín L, López Pino MA, Fournier Del Castillo C, Duat Rodríguez A. Neuroimaging findings in patient series with mucopolysaccharidosis. Neurologia. 2012;27(7):407–13.PubMedCrossRefGoogle Scholar
  197. 197.
    Takahashi Y, Sukegawa K, Aoki M, Ito A, Suzuki K, Sakaguchi H, Watanabe M, Isogai K, Mizuno S, Hoshi H, Kuwata K, Tomatsu S, Kato S, Ito T, Kondo N, Orii T. Evaluation of accumulated mucopolysaccharides in the brain of patients with mucopolysaccharidoses by (1)H-magnetic resonance spectroscopy before and after bone marrow transplantation. Pediatr Res. 2001;49(3):349–55.PubMedCrossRefGoogle Scholar
  198. 198.
    Clark JF, Cecil KM. Diagnostic methods and recommendations for the cerebral creatine deficiency syndromes. Pediatr Res. 2015;77(3):398–405.PubMedCrossRefGoogle Scholar
  199. 199.
    Braissant O, Henry H. AGAT, GAMT and SLC6A8 distribution in the central nervous system, in relation to creatine deficiency syndromes: a review. J Inherit Metab Dis. 2008;31(2):230–9.PubMedCrossRefGoogle Scholar
  200. 200.
    Braissant O, Henry H, Beard E, Uldry J. Creatine deficiency syndromes and the importance of creatine synthesis in the brain. Amino Acids. 2011;40:1315–24.PubMedCrossRefGoogle Scholar
  201. 201.
    Cheillan D, Cognat S, Vandenberghe N, Des Portes V, Vianey-Saban C. Creatine deficiency syndromes. Rev Neurol (Paris). 2005;161:284–9.CrossRefGoogle Scholar
  202. 202.
    Stence NV, Coughlin CR 2nd, Fenton LZ, Thomas JA. Distinctive pattern of restricted diffusion in a neonate with molybdenum cofactor deficiency. Pediatr Radiol. 2013;43(7):882–5.PubMedCrossRefGoogle Scholar
  203. 203.
    Higuchi R, Sugimoto T, Tamura A, Kioka N, Tsuno Y, Higa A, Yoshikawa N. Early features in neuroimaging of two siblings with molybdenum cofactor deficiency. Pediatrics. 2014;133(1):e267–71.PubMedCrossRefGoogle Scholar
  204. 204.
    Vijayakumar K, Gunny R, Grunewald S, Carr L, Chong KW, DeVile C, Robinson R, McSweeney N, Prabhakar P. Clinical neuroimaging features and outcome in molybdenum cofactor deficiency. Pediatr Neurol. 2011;45(4):246–52.PubMedCrossRefGoogle Scholar
  205. 205.
    Armstrong DD. Neuropathology of Rett syndrome. Ment Retard Dev Disabil Res Rev. 2002;8(2):72–6.PubMedCrossRefGoogle Scholar
  206. 206.
    Carter JC, Lanham DC, Pham D, Bibat G, Naidu S, Kaufmann WE. Selective cerebral volume reduction in Rett syndrome: a multiple-approach MR imaging study. AJNR Am J Neuroradiol. 2008;29(3):436–41.PubMedCrossRefGoogle Scholar
  207. 207.
    Dunn HG, Stoessl AJ, Ho HH, MacLeod PM, Poskitt KJ, Doudet DJ, Schulzer M, Blackstock D, Dobko T, Koop B, de Amorim GV. Rett syndrome: investigation of nine patients, including PET scan. Can J Neurol Sci. 2002;29(4):345–57.PubMedCrossRefGoogle Scholar
  208. 208.
    Khong PL, Lam CW, Ooi CG, Ko CH, Wong VC. Magnetic resonance spectroscopy and analysis of MECP2 in Rett syndrome. Pediatr Neurol. 2002;26(3):205–9.PubMedCrossRefGoogle Scholar
  209. 209.
    Gökcay A, Kitis O, Ekmekci O, Karasoy H, Sener RN. Proton MR spectroscopy in Rett syndrome. Comput Med Imaging Graph. 2002;26(4):271–5.PubMedCrossRefGoogle Scholar
  210. 210.
    Smith DW, Lemli L, Opitz J. A newly recognized syndrome of multiple congenital anomalies. J Pediatr. 1964;64:210–7.PubMedCrossRefGoogle Scholar
  211. 211.
    Irons M, Elias ER, Salen G, Batta AK, Frieden R, Chen TS, Salen G. Defective cholesterol biosynthesis in Smith-Lemli-Opitz syndrome. Lancet. 1993;341(8857):1414.PubMedCrossRefGoogle Scholar
  212. 212.
    Trasimeni G, Di Biasi C, Iannilli M, Orlandi L, Boscherini B, Balducci R, Gualdi GF. MRI in Smith-Lemli-Opitz syndrome type I. Childs Nerv Syst. 1997;13(1):47–9.PubMedCrossRefGoogle Scholar
  213. 213.
    Kelley RL, Roessler E, Hennekam RC, Feldman GL, Kosaki K, Jones MC, Palumbos JC, Muenke M. Holoprosencephaly in RSH/Smith-Lemli-Opitz syndrome: does abnormal cholesterol metabolism affect the function of Sonic Hedgehog? Am J Med Genet. 1996;66(4):478–84.PubMedCrossRefGoogle Scholar
  214. 214.
    Lee RW, Conley SK, Gropman A, Porter FD, Baker EH. Brain magnetic resonance imaging findings in Smith-Lemili-Opitz syndrome. Am J Med Genet A. 2013;161(10):2407–19.PubMedCentralGoogle Scholar
  215. 215.
    Lee RW, Yoshida S, Jung ES, Mori S, Baker EH, Porter FD. Corpus callosum measurements correlate with developmental delay in Smith-Lemli-Opitz syndrome. Pediatr Neurol. 2013;49(2):107–12.PubMedPubMedCentralCrossRefGoogle Scholar
  216. 216.
    Fitoz S, Atasoy C, Deda G, Erden I, Akyar S. Hippocampal malrotation with normal corpus callosum in a child with Opitz syndrome. Clin Imaging. 2003;27(2):75–6.PubMedCrossRefGoogle Scholar
  217. 217.
    Caruso PA, Poussaint TY, Tzika AA, Zurakowski D, Astrakas LG, Elias ER, Bay C, Irons MB. MRI and 1H MRS findings in Smith-Lemli-Opitz syndrome. Neuroradiology. 2004;46(1):3–14.PubMedCrossRefGoogle Scholar
  218. 218.
    Rodriguez D, Gauthier F, Bertini E, Bugiani M, Brenner M, N’guyen S, Goizet C, Gelot A, Surtees R, Pedespan JM, Hernandorena X, Troncoso M, Uziel G, Messing A, Ponsot G, Pham-Dinh D, Dautigny A, Boespflug-Tanguy O. Infantile Alexander disease: spectrum of GFAP mutations and genotype-phenotype correlation. Am J Hum Genet. 2001;69(5):1134–40.PubMedPubMedCentralCrossRefGoogle Scholar
  219. 219.
    van der Knaap MS, Naidu S, Breiter SN, Blaser S, Stroink H, Springer S, Begeer JC, van Coster R, Barth PG, Thomas NH, Valk J, Powers JM. Alexander disease: diagnosis with MR imaging. AJNR Am J Neuroradiol. 2001;22(3):541–52.PubMedGoogle Scholar
  220. 220.
    Gorospe JR, Naidu S, Johnson AB, Puri V, Raymond GV, Jenkins SD, Pedersen RC, Lewis D, Knowles P, Fernandez R, De Vivo D, van der Knaap MS, Messing A, Brenner M, Hoffman EP. Molecular findings in symptomatic and pre-symptomatic Alexander disease patients. Neurology. 2002;58(10):1494–500.PubMedCrossRefGoogle Scholar
  221. 221.
    Johnson AB, Brenner M. Alexander’s disease: clinical, pathologic, and genetic features. J Child Neurol. 2003;18(9):625–32.PubMedCrossRefGoogle Scholar
  222. 222.
    Li R, Johnson AB, Salomons G, Goldman JE, Naidu S, Quinlan R, Cree B, Ruyle SZ, Banwell B, D’Hooghe M, Siebert JR, Rolf CM, Cox H, Reddy A, Gutiérrez-Solana LG, Collins A, Weller RO, Messing A, van der Knaap MS, Brenner M. Glial fibrillary acidic protein mutations in infantile, juvenile, and adult forms of Alexander disease. Ann Neurol. 2005;57(3):310–26.PubMedCrossRefGoogle Scholar
  223. 223.
    Prust M, Wang J, Morizono H, Messing A, Brenner M, Gordon E, Hartka T, Sokohl A, Schiffmann R, Gordish-Dressman H, Albin R, Amartino H, Brockman K, Dinopoulos A, Dotti MT, Fain D, Fernandez R, Ferreira J, Fleming J, Gill D, Griebel M, Heilstedt H, Kaplan P, Lewis D, Nakagawa M, Pedersen R, Reddy A, Sawaishi Y, Schneider M, Sherr E, Takiyama Y, Wakabayashi K, Gorospe JR, Vanderver A. GFAP mutations, age at onset, and clinical subtypes in Alexander disease. Neurology. 2011;77(13):1287–94.PubMedPubMedCentralCrossRefGoogle Scholar
  224. 224.
    van der Knaap MS, Salomons GS, Li R, Franzoni E, Gutiérrez-Solana LG, Smit LM, Robinson R, Ferrie CD, Cree B, Reddy A, Thomas N, Banwell B, Barkhof F, Jakobs C, Johnson A, Messing A, Brenner M. Unusual variants of Alexander’s disease. Ann Neurol. 2005;57(3):327–38.PubMedCrossRefGoogle Scholar
  225. 225.
    Ni Q, Johns GS, Manepalli A, Martin DS, Geller TJ. Infantile Alexander’s disease: serial neuroradiologic findings. J Child Neurol. 2002;17(6):463–6.PubMedCrossRefGoogle Scholar
  226. 226.
    Mignot C, Desguerre I, Burglen L, Hertz-Pannier L, Renaldo F, Gadisseux JF, Gallet S, Pham-Dinh D, Boespflug-Tanguy O, Rodriguez D. Tumor-like enlargement of the optic chiasm in an infant with Alexander disease. Brain and Development. 2009;31(3):244–7.PubMedCrossRefGoogle Scholar
  227. 227.
    Van Poppel K, Broniscer A, Patay Z, Morris EB. Alexander disease: an important mimicker of focal brainstem glioma. Pediatr Blood Cancer. 2009;53(7):1355–6.PubMedPubMedCentralCrossRefGoogle Scholar
  228. 228.
    Biancheri R, Rossi A, Ceccherini I, Pezzella M, Prato G, Striano P, Minetti C. Magnetic resonance imaging “tigroid pattern” in Alexander disease. Neuropediatrics. 2013;44(3):174–6.PubMedGoogle Scholar
  229. 229.
    Imamura A, Orii KE, Mizuno S, Hoshi H, Kondo T. MR imaging and 1H-MR spectroscopy in a case of juvenile Alexander disease. Brain and Development. 2002;24(7):723–6.PubMedCrossRefGoogle Scholar
  230. 230.
    Brockmann K, Dechent P, Meins M, Haupt M, Sperner J, Stephani U, Frahm J, Hanefeld F. Cerebral proton magnetic resonance spectroscopy in infantile Alexander disease. J Neurol. 2003;250(3):300–6.PubMedCrossRefGoogle Scholar
  231. 231.
    Bassuk AG, Joshi A, Burton BK, Larsen MB, Burrowes DM, Stack C. Alexander disease with serial MRS and a new mutation in the glial fibrillary acidic protein gene. Neurology. 2003;61(7):1014–5.PubMedCrossRefGoogle Scholar
  232. 232.
    van der Voorn JP, Pouwels PJ, Salomons GS, Barkhof F, van der Knaap MS. Unraveling pathology in juvenile Alexander disease: serial quantitative MR imaging and spectroscopy of white matter. Neuroradiology. 2009;51(10):669–75.PubMedPubMedCentralCrossRefGoogle Scholar
  233. 233.
    Nelson A, Kelley RE, Nguyen J, Palacios E, Neitzschman HR. MRS findings in a patient with juvenile-onset Alexander’s leukodystrophy. J La State Med Soc. 2013;165(1):14–7.PubMedGoogle Scholar
  234. 234.
    Bhat MD, Bindu PS, Christopher R, Prasad C, Verma A. Novel imaging findings in two cases of biotinidase deficiency-a treatable metabolic disorder. Metab Brain Dis. 2015;30(5):1291–4.PubMedCrossRefGoogle Scholar
  235. 235.
    Desai S, Ganesan K, Hegde A. Biotinidase deficiency: a reversible metabolic encephalopathy. Pediatr Radiol. 2008;38(8):848–56.PubMedCrossRefGoogle Scholar
  236. 236.
    Burton BK, Roach ES, Wolf B, Weissbecker KA. Sudden death associated with biotinidase deficiency. Pediatrics. 1987;79:482–3.PubMedGoogle Scholar
  237. 237.
    Baykal T, Gokcay G, Gokdemir Y, Demir F, Seckin Y, Demirkol M, Jensen K, Wolf B. Asymptomatic adults and older siblings with biotinidase deficiency ascertained by family studies of index cases. J Inherit Metab Dis. 2005;28:903–12.PubMedCrossRefGoogle Scholar
  238. 238.
    Wiznitzer M, Bangert BA. Biotinidase deficiency: clinical and MRI findings consistent with myelopathy. Pediatr Neurol. 2003;29(1):56–8.PubMedCrossRefGoogle Scholar
  239. 239.
    Yang Y, Li C, Qi Z, Xiao J, Zhang Y, Yamaguchi S, Hasegawa Y, Tagami Y, Jiang Y, Xiong H, Zhang Y, Qin J, Wu XR. Spinal cord demyelination associated with biotinidase deficiency in 3 Chinese patients. J Child Neurol. 2007;22(2):156–60.PubMedCrossRefGoogle Scholar
  240. 240.
    Mc Sweeney N, Grunewald S, Bhate S, Ganesan V, Chong WK, Hemingway C. Two unusual clinical and radiological presentations of biotinidase deficiency. Eur J Paediatr Neurol. 2010;14(6):535–8.PubMedCrossRefGoogle Scholar
  241. 241.
    Cabasson S, Rivera S, Mesli S, Dulubac E. Brainstem and spinal cord lesions associated with skin changes and hearing loss: think of biotinidase deficiency. J Pediatr. 2015;166(3):771–1.e1.PubMedCrossRefGoogle Scholar
  242. 242.
    Bottin L, Prud'hon S, Guey S, Giannesini C, Wolf B, Pindolia K, Stankoff B. Biotinidase deficiency mimicking neuromyelitis optica: initially exhibiting symptoms in adulthood. Mult Scler. 2015;21(12):1604–7.PubMedCrossRefGoogle Scholar
  243. 243.
    Soares-Fernandes JP, Magalhães Z, Rocha JF, Barkovich AJ. Brain diffusion-weighted and diffusion tensor imaging findings in an infant with biotinidase deficiency. AJNR Am J Neuroradiol. 2009;30(9):E12.CrossRefGoogle Scholar
  244. 244.
    Bunch M, Singh A. Peculiar neuroimaging and electrophysiological findings in a patient with biotinidase deficiency. Seizure. 2011;20(1):83–6.PubMedCrossRefGoogle Scholar
  245. 245.
    Ginat-Israeli T, Hurvitz H, Klar A, Blinder G, Branski D, Amir N. Deteriorating neurological and neuroradiological course in treated biotinidase deficiency. Neuropediatrics. 1993;24(2):103–6.PubMedCrossRefGoogle Scholar
  246. 246.
    Bousounis DP, Camfield PR, Wolf B. Reversal of brain atrophy with biotin treatment in biotinidase deficiency. Neuropediatrics. 1993;24(4):214–7.PubMedCrossRefGoogle Scholar
  247. 247.
    Haagerup A, Andersen JB, Blichfeldt S, Christensen MF. Biotinidase deficiency: two cases of very early presentation. Dev Med Child Neurol. 1997;39(12):832–5.PubMedGoogle Scholar
  248. 248.
    Hoffman TL, Simon EM, Ficicioglu C. Biotinidase deficiency: the importance of adequate follow-up for an inconclusive newborn screening result. Eur J Pediatr. 2005;164(5):298–301.PubMedCrossRefGoogle Scholar
  249. 249.
    Schürmann M, Engelbrecht V, Lohmeier K, Lenard HG, Wendel U, Gärtner J. Cerebral metabolic changes in biotinidase deficiency. J Inherit Metab Dis. 1997;20(6):755–60.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Children’s National Health SystemWashington, DCUSA
  2. 2.The George Washington University School of MedicineWashington, DCUSA

Personalised recommendations