An Efficient Approach for Real-Time Processing of RDSZ-Based Compressed RDF Streams

  • Ndéye Bousso Déme
  • Amadou Fall Dia
  • Aliou Boly
  • Zakia Kazi-Aoul
  • Raja Chiky
Part of the Studies in Computational Intelligence book series (SCI, volume 722)


In recent years, the volume of generated RDF graphs streams from different fields of applications is very large and therefore difficult to process in an optimized manner. Indeed, processing such data in conventional triplestores can be costly in terms of execution time and memory consumption. Several works have examined data compression approach both on static and dynamic RDF data. In addition to those based on stored RDF data, two recent compression algorithms RDSZ and ERI were focused on RDF streams. Continuous compressed format requires less memory space but cannot be exploited through SPARQL queries. In this paper, we propose an approach for continuous querying RDSZ-based RDF streams without decompression phase. We add three algorithms from simple to aggregate query execution over RDSZ compressed items. Our experimentation use real datasets to demonstrate the effectiveness and efficiency of our proposition in term of query execution time and memory save.


RDF streams RDSZ Compression Continuous querying 


  1. 1.
    Abadi, D.J., Marcus, A., Madden, S.R., Hollenbach, K.: Scalable semantic web data management using vertical partitioning. In: Proceedings of the 33rd International Conference on Very Large Data Bases, pp. 411–422. VLDB Endowment (2007)Google Scholar
  2. 2.
    Álvarez-García, S., Brisaboa, N.R., Fernández, J.D., Martínez-Prieto, M.A.: Compressed k2-triples for full-in-memory rdf engines. arXiv preprint arXiv:1105.4004 (2011)
  3. 3.
    Anicic, D., Fodor, P., Rudolph, S., Stojanovic, N.: Ep-sparql: a unified language for event processing and stream reasoning. In: Proceedings of the 20th International Conference on World Wide Web, pp. 635–644. ACM (2011)Google Scholar
  4. 4.
    Barbieri, D., Braga, D., Ceri, S., Della Valle, E., Grossniklaus, M.: Stream reasoning: where we got so far. In: NeFoRS 2010: 4th International Workshop on New Forms of Reasoning for the Semantic Web: Scalable and Dynamic (2010)Google Scholar
  5. 5.
    Barbieri, D.F., Braga, D., Ceri, S., Della Valle, E., Grossniklaus, M.: C-sparql: Sparql for continuous querying. In: Proceedings of the 18th International Conference on World Wide Web, pp. 1061–1062. ACM (2009)Google Scholar
  6. 6.
    Berners-Lee, T., Hendler, J., Lassila, O., et al.: The semantic web. Sci. Am. 284(5), 28–37 (2001)Google Scholar
  7. 7.
    Calbimonte, J.P., Corcho, O., Gray, A.J.: Enabling ontology-based access to streaming data sources. In: International Semantic Web Conference, pp. 96–111. Springer (2010)Google Scholar
  8. 8.
    Chiky, R.: Résumé de flux de données ditribués. Ph.D. thesis, Télécom ParisTech (2009)Google Scholar
  9. 9.
    Csernel, B., Clérot, F., Hébrail, G.: Classification de Flux de Donnes par chantillonnages sur Fentres InclinesGoogle Scholar
  10. 10.
    Della Valle, E., Ceri, S., Barbieri, D.F., Braga, D., Campi, A.: A first step towards stream reasoning. In: Future Internet Symposium, pp. 72–81. Springer (2008)Google Scholar
  11. 11.
    Fernández, J.D., Gutierrez, C., Martínez-Prieto, M.A.: Rdf compression: basic approaches. In: Proceedings of the 19th International Conference on World Wide Web, pp. 1091–1092. ACM (2010)Google Scholar
  12. 12.
    Fernández, J.D., Llaves, A., Corcho, O.: Efficient rdf interchange (eri) format for rdf data streams. In: International Semantic Web Conference, pp. 244–259. Springer (2014)Google Scholar
  13. 13.
    Fernández, J.D., Martínez-Prieto, M.A., Gutiérrez, C., Polleres, A., Arias, M.: Binary RDF representation for publication and exchange (hdt). Web Semant. Sci. Serv. Agents World Wide Web 19, 22–41 (2013)Google Scholar
  14. 14.
    Fernández, N., Arias, J., Sánchez, L., Fuentes-Lorenzo, D., Corcho, Ó.: RDSZ: an approach for lossless RDF stream compression. In: European Semantic Web Conference, pp. 52–67. Springer (2014)Google Scholar
  15. 15.
    Joshi, A.K., Hitzler, P., Dong, G.: Logical linked data compression. In: Extended Semantic Web Conference, pp. 170–184. Springer (2013)Google Scholar
  16. 16.
    Komazec, S., Cerri, D., Fensel, D.: Sparkwave: continuous schema-enhanced pattern matching over RDF data streams. In: Proceedings of the 6th ACM International Conference on Distributed Event-Based Systems, pp. 58–68. ACM (2012)Google Scholar
  17. 17.
    Le-Phuoc, D., Dao-Tran, M., Parreira, J.X., Hauswirth, M.: A native and adaptive approach for unified processing of linked streams and linked data. In: International Semantic Web Conference, pp. 370–388. Springer (2011)Google Scholar
  18. 18.
    Urbani, J., Maassen, J., Drost, N., Seinstra, F., Bal, H.: Scalable RDF data compression with mapreduce. Concurr. Comput. Pract. Exp. 25(1), 24–39 (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Ndéye Bousso Déme
    • 1
  • Amadou Fall Dia
    • 2
  • Aliou Boly
    • 1
  • Zakia Kazi-Aoul
    • 2
  • Raja Chiky
    • 2
  1. 1.LID LabUCADDakar-FannSenegal
  2. 2.LISITE LabISEPParisFrance

Personalised recommendations