Advertisement

Time-Dependent SIR Analysis in Shopping Malls Using Fractal-Based Mobility Models

  • Yuri Orlov
  • Elisabeth Kirina-Lilinskaya
  • Andrey Samuylov
  • Aleksandr Ometov
  • Dmitri MoltchanovEmail author
  • Yulia Gaimamaka
  • Sergey Andreev
  • Konstantin Samouylov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10372)

Abstract

Shopping malls are characterized by a high density of users. The use of direct device-to-device (D2D) communications may significantly mitigate the load imposed on the cellular systems in such environments. In addition to high user densities, the communicating entities are inherently mobile with very specific attractor-based mobility patterns. In this paper, we propose a model for characterizing time-dependent signal-to-interference ratio (SIR) in shopping malls. Particularly, we use fractional Fokker-Plank equation for modeling the non-linear functional of the average SIR value, defined on a stochastic fractal trajectory. The evolution equation of the average SIR is derived in terms of fractal motion of the tagged receiver and the interfering devices. We illustrate the use of our model by showing that the behavior of SIR is generally varying for different types of fractals.

Keywords

Mobility Fractal stochastic motion Time-dependent metrics Average SIR evolution Device-to-device communications 

Notes

Acknowledgments

The publication was financially supported by the Ministry of Education and Science of the Russian Federation (the Agreement number 02.a03.21.0008) and RFBR (research projects No. 16-07-00766, 17-07-00845).

References

  1. 1.
    Ericsson: Ericsson mobility report: on the pulse of the networked society, July 2015Google Scholar
  2. 2.
    Nordrum, A.: Popular internet of things forecast of 50 billion devices by 2020 is outdated. IEEE Spectrum 18 (2016)Google Scholar
  3. 3.
    Dohler, M., Nakamura, T., Osseiran, A., Monserrat, J.F., Marsch, P.: 5G Mobile and Wireless Communications Technology. Cambridge University Press, Cambridge (2016)Google Scholar
  4. 4.
    Andreev, S., Gonchukov, P., Himayat, N., Koucheryavy, Y., Turlikov, A.: Energy efficient communications for future broadband cellular networks. Comput. Commun. 35(14), 1662–1671 (2012)CrossRefGoogle Scholar
  5. 5.
    Orsino, A., Militano, L., Araniti, G., Iera, A.: Social-aware content delivery with D2D communications support for emergency scenarios in 5G systems. In: Proceedings of 22th European Wireless Conference European Wireless, VDE, pp. 1–6 (2016)Google Scholar
  6. 6.
    International Telecommunications Union (ITU): Framework and overall objectives of the future development of IMT for 2020 and beyond. Recommendation ITU-R M.2083-0, September 2015Google Scholar
  7. 7.
    International Telecommunications Union (ITU): Minimum requirements related to technical performance for IMT-2020 radio interface(s). DRAFT NEW REPORT ITU-R M.[IMT-2020.TECH PERF REQ], February 2017Google Scholar
  8. 8.
    Ge, X., Tu, S., Mao, G., Wang, C.-X., Han, T.: 5G ultra-dense cellular networks. IEEE Wirel. Commun. 23(1), 72–79 (2016)CrossRefGoogle Scholar
  9. 9.
    Haneda, K., Tian, L., Asplund, H., Li, J., Wang, Y., Steer, D., Li, C., Balercia, T. Lee, S., Kim, Y., et al.: Indoor 5G 3GPP-like channel models for office and shopping mall environments. In: Proceedings of International Conference on Communications Workshops (ICC), pp. 694–699. IEEE (2016)Google Scholar
  10. 10.
    Lin, X., Andrews, J.G., Ghosh, A., Ratasuk, R.: An overview of 3GPP device-to-device proximity services. IEEE Commun. Mag. 52(4), 40–48 (2014)CrossRefGoogle Scholar
  11. 11.
    Galati, A., Djemame, K., Greenhalgh, C.: A mobility model for shopping mall environments founded on real traces. Network. Sci. 2(1–2), 1–11 (2013)CrossRefGoogle Scholar
  12. 12.
    Samuylov, A., Moltchanov, D., Gaidamaka, Y., Begishev, V., Kovalchukov, R., Abaev, P., Shorgin, S.: SIR analysis in square-shaped indoor premises. In: Proceedings of 30th European Conference on Modelling and Simulation, ECMS, pp. 692–697 (2016)Google Scholar
  13. 13.
    Hughes, B., Montroll, E., Shlesinger, M.: Fractal random walks. J. Stat. Phys. 28(1), 111–126 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kaye, B.H.: A random walk through fractal dimensions. Wiley, New York (2008)zbMATHGoogle Scholar
  15. 15.
    ElSawy, H., Hossain, E., Alouini, M.-S.: Analytical modeling of mode selection and power control for underlay D2D communication in cellular networks. IEEE Trans. Commun. 62(11), 4147–4161 (2014)CrossRefGoogle Scholar
  16. 16.
    ElSawy, H., Hossain, E., Haenggi, M.: Stochastic geometry for modeling, analysis, and design of multi-tier and cognitive cellular wireless networks: a survey. IEEE Commun. Surv. Tutorials 15(3), 996–1019 (2013)CrossRefGoogle Scholar
  17. 17.
    Orlov, Y., Fedorov, S., Samuylov, A., Gaidamaka, Y., Molchanov, D.: Simulation of devices mobility to estimate wireless channel quality metrics in 5G network. In: Proceedings of the ICNAAM, pp. 19–25 (2016)Google Scholar
  18. 18.
    Samuylov, A., Ometov, A., Begishev, V., Kovalchukov, R., Moltchanov, D., Gaidamaka, Y., Samouylov, K., Andreev, S., Koucheryavy, Y.: Analytical performance estimation of network-assisted D2D communications in urban scenarios with rectangular cells. Transactions on Emerging Telecommunications Technologies (2015)Google Scholar
  19. 19.
    Baccelli, F., Błaszczyszyn, B., et al.: Stochastic geometry and wireless networks: volume I. Found. Trends Network. 4(1–2), 1–312 (2010)zbMATHGoogle Scholar
  20. 20.
    Haenggi, M.: Stochastic Geometry for Wireless Networks. Cambridge University Press, Cambridge (2012)CrossRefzbMATHGoogle Scholar
  21. 21.
    Zenyuk, D.A., Mitin, N.A., Orlov, Y.N.: Random walks modeling on Cantor set. In: Preprints of the Keldysh Institute of Applied Mathematics, pp. 31–18 (2013)Google Scholar
  22. 22.
    Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. 1993. Gordon & Breach Science Publishers, Yverdon (1987)zbMATHGoogle Scholar
  23. 23.
    Rappaport, T.S., et al.: Wireless Communications: Principles and Practice, vol. 2. Prentice Hall PTR New Jersey, Upper Saddle River (1996)zbMATHGoogle Scholar
  24. 24.
    Galati, A., Greenhalgh, C.: Human mobility in shopping mall environments. In: Proceedings of the Second International Workshop on Mobile Opportunistic Networking, pp. 1–7. ACM (2010)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2017

Authors and Affiliations

  • Yuri Orlov
    • 1
  • Elisabeth Kirina-Lilinskaya
    • 1
  • Andrey Samuylov
    • 2
    • 3
  • Aleksandr Ometov
    • 2
    • 3
  • Dmitri Moltchanov
    • 2
    • 3
    Email author
  • Yulia Gaimamaka
    • 3
    • 4
  • Sergey Andreev
    • 2
  • Konstantin Samouylov
    • 3
    • 4
  1. 1.Department of Kinetic EquationsKeldysh Institute of Applied MathematicsMoscowRussia
  2. 2.Department of Communications EngineeringTampere University of TechnologyTampereFinland
  3. 3.Department of Applied Probability and InformaticsRUDN UniversityMoscowRussia
  4. 4.Institute of Informatics ProblemsFRC CSC RASMoscowRussia

Personalised recommendations