Demands, Opportunities and Constraints of Green Space Development for Future Urban Development under Demographic and Climate Change

  • Stefanie Rößler


Impacts of demographic change—shrinking population, vacancies in the building stock and an increasing amount and expanding areas of open spaces—are changing the quantitative framework of green spaces. With regard to an ageing population as well as the ongoing individualization and diversification of urban lifestyles, we can also to point changing qualitative requirements. Demographic change clearly has various repercussions for green space: The demolition of surplus residential and commercial buildings increases the number of vacant lots, which serves to open up new opportunities as well as requirements for green space development. Against this background of varying requirements, it is vital to address a number of issues around the function and design of green spaces as well as access to such open spaces. The impacts of climate change such as rising average temperatures, the increasing number and intensity of heat waves and heavy precipitation events, influence the quality of life and well-being of residents, particularly in densely settled urban areas. Various forms of urban vegetation, green spaces, and urban ecosystems, together provide benefits and ecosystem services to meet these challenges. Such green infrastructure is a crucial element in urban climate adaptation strategies by helping to regulate the micro- and bioclimate, thereby mitigating heat islands as well as reducing the extent of storm water and flooding. Otherwise, implementing green spaces is often considered as a competing objective while developing compact cities in terms of climate mitigation and resource efficiency. Thus, the scientific debate is characterized by arguing about the ‘right’ urban form to help protect and expand green infrastructure within the manifold, sometimes competing, demands of urban development. The article will focus on the demands, opportunities and constraints of green space development resulting from demographic change and the need to adapt to the impacts of climate change in urban areas. Firstly, the requirements of green space development with regard to adaptation to climate change and demographic change will be introduced. Secondly, synergies and conflicts concerning the urban form will be examined. Thirdly, the opportunities and constraints of green space development with regard to this framework will be discussed.


  1. Bernhofer, C., Matschullat, J., & Bobeth, A. (Eds.). (2011). Klimaprojektionen für die REGKLAM-Modellregion Dresden. REGKLAM-Publikationsreihe, Heft 2. Berlin: Rhombos.Google Scholar
  2. Blanco, H., Alberti, M., Olshansky, R., Chang, S., Wheeler, S. M., Randolph, J., et al. (2009). Shaken, shrinking, hot, impoverished and informal: Emerging research agendas in planning. Progress in Planning, 75(3), 109–154.Google Scholar
  3. Blume, T. (2005). New urban configurations. In: IBA Office (Ed.). The other cities. IBA Stadtumbau 2010. Band 1: Experiment (pp. 111–116). Dessau: Jovis.Google Scholar
  4. BMVBS; BBR (Bundesministerium für Verkehr, Bau und Stadtentwicklung; Bundesamt für Bauwesen und Raumordnung). (2007). 2. Statusbericht. 5 Jahre Stadtumbau Ost – eine Zwischenbilanz. Berlin.Google Scholar
  5. BMVBS (Bundesministerium für Verkehr, Bau und Stadtentwicklung) (Hrsg). (2011). Klimawandelgerechte Stadtentwicklung. Ursachen und Folgen des Klimawandels durch urbane Konzepte begegnen. Forschungen, Heft 149. Bonn.Google Scholar
  6. BMVBS (Bundesministerium für Verkehr, Bau und Stadtentwicklung). (2012). 10 Jahre Stadtumbau Ost – Berichte aus der Praxis. 5. Statusbericht der Bundestransferstelle Stadtumbau Ost. Berlin.Google Scholar
  7. Bowler, D. E., Buyung-Ali, L., Knight, T. M., & Pullin, A. S. (2010). Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landscape and Urban Planning, 97(3), 147–155.CrossRefGoogle Scholar
  8. Boyko, C. T., & Cooper, R. (2011). Clarifying and re-conceptualising density. Progress in Planning, 76(1), 1–61.CrossRefGoogle Scholar
  9. Burkhardt, I., Dietrich, R., Hoffmann, H., Leschner, J., Lohmann, K., Schoder, F., et al. (2008). Urbane Wälder. Abschlussbericht zur Voruntersuchung für das Erprobungs- und Entwicklungsvorhaben Ökologische Stadterneuerung durch Anlage urbaner Waldflächen auf innerstädtischen Flächen im Nutzungswandel - ein Beitrag zur Stadtentwicklung. Naturschutz und Biologische Vielfalt, Band 63. Bonn: Bundesamt für Naturschutz.Google Scholar
  10. Claßen, T., Steinkühler, N., Hornberg, C. (2013). Herausforderungen und Lösungsstrategien für eine gesundheitsgerechte Klimaanpassung in Kommunen: Entwicklung eines Moduls ‘Menschliche Gesundheit’ im Rahmen kommunaler Klimaanpassungskonzepte UVP-report, 27(1+2), 131–136.Google Scholar
  11. Doehler-Behzadi, M., & Schiffers, B. (2004). A story of density. In: Lütke Daldrup, E., Doehler-Behzadi, M. (Eds.), PlusMinus Leipzig 2030. Transfoming the City (pp. 32–48). Wuppertal: Müller + Busmann.Google Scholar
  12. Dosch, F., & Porsche, L. (2009). Ressourcenschonende Stadtentwicklung. Nachhaltige Siedlungsstrukturen durch Energiekonzepte, Klimaschutz und Flächeneffizienz. Informationen zur Raumentwicklung, 3(4), 255–271.Google Scholar
  13. Emmanuel, R., & Krüger, E. (2012). Urban heat island and its impact on climate change resilience in a shrinking city: The case of Glasgow, UK. Building and Environment, 53, 137–149.Google Scholar
  14. Endlicher, W., & Kress, A. (2008). ‘Wir müssen unsere Städte neu erfinden’ Anpassungsstrategien für Stadtregionen. Informationen zur Raumentwicklung, 6(7), 437–445.Google Scholar
  15. Gill, S. E., Handley, J. F., Ennos, A. R., & Pauleit, S. (2007). Adapting cities for climate change: The role of the green infrastructure. Built Environment, 33(1), 115–133.CrossRefGoogle Scholar
  16. Hamin, E. M., & Gurran, N. (2009). Urban form and climate change: Balancing adaptation and mitigation in the U.S. and Australia. Habitat International, 33(3), 238–245.CrossRefGoogle Scholar
  17. Hoyer, J., Dickhaut, W., Kronawitter, L., & Weber, B. (2011). Water sensitive urban design. Principles and inspiration for sustainable stormwater management in the city of the future. Berlin: Jovis.Google Scholar
  18. IPCC. (2012). Summary for policymakers. In: Field, C. B., Barros, V., Stocker, T. F., Qin, D., Dokken, D. J., Ebi, K. L., Mastrandrea, M. D., Mach, K. J., Plattner, G.-K., Allen, S. K., Tignor, M., Midgley, P. M. (Eds.), Managing the risks of extreme events and disasters to advance climate change adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (pp. 1–19). Cambridge, UK; New York, NY, USA: Cambridge University Press.Google Scholar
  19. Kowarik, I. (2005). Wild urban woodlands: Towards a conceptual framework. In: Kowarik, I., Körner, S. (Eds.), Wild urban woodlands. New Perspectives for Urban Forestry (pp. 1–32). Berlin, Heidelberg: Springer.Google Scholar
  20. Krüger, T., Held, F., & Hoechstetter, S. (2014). Identifikation von hitzesensitiven Stadtquartieren. In: Wende, W., Rößler, S., Krüger, T. (Hrsg.), Grundlagen für eine klimawandelangepasste Stadt- und Freiraumplanung. REGKLAM-Publikationsreihe, Heft 6 (pp. 5–20). Berlin: Rhombos.Google Scholar
  21. Krüger, T., Held, F., Hoechstetter, S., Goldberg, V., Geyer, T., & Kurbjuhn, C. (2013). A new heat sensitivity index for settlement areas. Urban Climate, 6, 63–81.Google Scholar
  22. Lehmann, I., Mathey, J., Rößler, S., Bräuer, A., & Goldberg, V. (2014). Urban vegetation structure types as a methodological approach for identifying ecosystem services—application to the analysis of micro-climatic effects. Ecological Indicators, 42, 58–72.CrossRefGoogle Scholar
  23. Mathey, J., & Rink, D. (2010). Urban wastelands—A chance for biodiversity in cities? Ecological aspects, social perceptions and acceptance of wilderness by residents. In: Müller, N., Werner, P., Kelcey, J. G. (Eds.), Urban biodiversity and design (pp. 406–424). Conservation Science and Practice Series. Oxford: Wiley-Blackwell.Google Scholar
  24. Mathey, J., Rößler, S., Banse, J., Lehmann, I., & Bräuer, A. (2015). Brownfields as an element of green infrastructure for implementing ecosystem services into urban areas. Journal of Urban Planning and Development, 141(3), A4015001–1.CrossRefGoogle Scholar
  25. Mathey, J., Rößler, S., Lehmann, I., Bräuer, A., Goldberg, V., Kurbjuhn, C., et al. (2011). Noch wärmer, noch trockener? Stadtnatur und Freiraumstrukturen im Klimawandel. Naturschutz und Biologische Vielfalt, Bd. 111. Bonn-Bad Godesberg: Bundesamt für Naturschutz.Google Scholar
  26. Overbeck, G., Hartz, A., & Fleischhauer, M. (2008). Ein 10-Punkte-Plan ‘Klimaanpassung’. Raumentwicklungsstrategien zum Klimawandel im Überblick. Informationen zur Raumentwicklung, 6(7), 363–380.Google Scholar
  27. Pizarro, R. (2009). Urban form and climate change. Towards appropriate development patterns to mitigate and adapt to global warming. In: Davoudi, S., Crawford, J., Mehmood, A. (Eds.), Planning for climate change. Strategies for mitigation and adaptation for spatial planners (pp. 33–45). London: Earthscan.Google Scholar
  28. Rienits, T. (2009). Shrinking cities: Causes and effects of population losses in the twentieth century. Nature and Culture, 4(3), 231–254.Google Scholar
  29. Rink, D. (2009). Wilderness: The nature of urban shrinkage? The debate on urban restructuring and restoration in Eastern Germany. Nature and Culture, 4(3), 275–292.Google Scholar
  30. Rosol, M. (2010). Public participation in post-fordist urban green space governance: The case of community gardens in Berlin. International Journal of Urban and Regional Research, 34(3), 548–563.CrossRefGoogle Scholar
  31. Rößler, S. (2007). Shrinking cities—Opportunities and challenges for urban green space planning: Experiences at the large housing estate of Leipzig-Gruenau. In: Langner, M., Endlicher, W. (Eds.), Shrinking cities: Effects on urban ecology and challenges for urban development (pp. 117–132). Frankfurt a. M.: Peter Lang Verlag.Google Scholar
  32. Rößler, S. (2008). Green space development in shrinking cities: Opportunities and constraints. Urbani Izziv, 19(2), 147–152.CrossRefGoogle Scholar
  33. Rößler, S. (2010). Freiräume in schrumpfenden Städten. Chancen und Grenzen der Freiraumplanung im Stadtumbau. Leibniz-Institut für ökologische Raumentwicklung: IÖR-Schriften, Band 50. Berlin: Rhombos.Google Scholar
  34. Rößler, S. (2013). Green infrastructure—Demands, opportunities and constraints of green space development for future urban development. In: Eßig, N. e. a. (Eds.), SB 13 Munich ‘Implementing sustainability—barriers and chances’—Sustainable Building Conference, Munich, April 24–26, Book of fullpapers (pp. 350–357). Stuttgart: Fraunhofer IRB Verlag.Google Scholar
  35. Schilling, J., & Logan, J. (2008). Greening the rust belt. A green infrastructure model for right sizing America’s shrinking cities. Journal of the American Planning Association, 74(4), 451–466.CrossRefGoogle Scholar
  36. Vicenzotti, V., & Trepl, L. (2009). City as wilderness. The wilderness metaphor from Wilhelm Heinrich Riehl to contemporary urban designers. Landscape Research, 34(4), 379–396.CrossRefGoogle Scholar
  37. Yokohari, M., & Bolthouse, J. (2011). Planning for the slow lane: The need to restore working greenspaces in maturing contexts. Landscape and Urban Planning, 100(4), 421–424.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Leibniz Institute of Ecological Urban and Regional DevelopmentDresdenGermany

Personalised recommendations