The Efficiency of Settlement Structures

Chapter

Abstract

The anthropogenic stock of nations accumulates from year to year materials (metals, plastics, glass, concrete, stones, etc.) for all sorts of durable goods. Some materials might be recycled and used as secondary raw material for new products. But the input into the anthropogenic stock is even in “old” developed economies with ambitious recycling targets five times larger than the output. The anthropogenic stock of Germany grows by 550 million tons per year. The building activities are responsible for almost 85% of a nation’s material flow of all durable goods with life expectancy longer than 1 year. In view of the projected urbanization until 2050—a doubling of urban population according to UN estimate from 3 to 6 billion people—the material input into the built environment is a key issue with regard to our material resource use in the future. After a brief explication of terms, the paper introduces the method of Material Flow Analysis of Urban Form. It stipulates, that only a bottom-up approach, which analyses and models the different patterns of land development along with building types, can deliver the information necessary for a more resource efficient way of urban development. The settlement structure can vary considerably in terms of material input per service unit and the urban structure predetermines for a long time span, how expensive maintenance of surfaces of built assets, interaction, transport, social, and technical infrastructure will be. Two examples of research findings generated by the approach are presented (infrastructure efficiency and costs; recycling potentials along different paths of building activity in Germany).

References

  1. Baccini, P., & Brunner, P. H. (2014). Metabolism of the anthroposphere . New York: Springer. Google Scholar
  2. Baynes, T. M., & Müller, D.B. (2016). A socio-economic metabolism approach to sustainable development and climate change mitigation. In: Clift, R., Druckman, A. (Eds.), Taking stock of industrial ecology. doi: 10.1007/978-3-319-20571-7_6.
  3. Buchert, M. et al. (2003). Sustainable building and housing in Germany: Material-flow-related components for a national sustainable development strategy ‘ linking the building and housing sector with the complementary area of ‘public infrastructure’—Final report UFOPLAN-No. 298 92 303/02, in cooperation with IÖR and TU Dresden, Darmstadt/Dresden, July 2003 (publication in the ‘Texte’ series of the Federal Environmental Agency (UBA). UBA (2004), Nachhaltiges Bauen und Wohnen in Deutschland, UBA-Texte 01/04, Berlin, 160 S. + Anhang).Google Scholar
  4. Daxbeck H., Kilialova A., & Obernosterer R. (2001). Der ökologische Fußabdruck der Stadt Wien. Ressourcen Management Agentur (RMA). Endbericht im Auftrag der Magistratsabteilung 22 – Umweltschutz der Stadt Wien. Wien.Google Scholar
  5. Duhme, F., & Pauleit, S. (1999). Stadtstrukturtypen – Bestimmung der Umweltleistungen von Stadtstrukturtypen für die Stadtplanung. Raumplanung, 4, 33–44.Google Scholar
  6. Fishman, T., Schandl, H., Tanikawa, H., Walker, P., & Krausmann, F. (2014). Accounting for the material stock of nations. Journal of Industrial Ecology, 18.Google Scholar
  7. Hashimoto, S., Tanikawa, H., & Moriguchi, Y. (2007). Where will the large amounts of materials accumulated within the economy go?—A material flow analysis of construction minerals for Japan. Waste Management, 27(12), 1725–1738. doi: 10.1016/j.wasman.2006.10.009.CrossRefGoogle Scholar
  8. Kennedy, C. A. (2003). Estimating the urban metabolism of Canadian cities: Greater Toronto Area case study. Canadian Journal of Civil Engineering, 30, Part 2, NRC Research Press.Google Scholar
  9. Lichtensteiger, T. (Hg.) (2006). Bauwerke als Ressourcennutzer und Ressourcenspender in der langfristigen Entwicklung urbaner Systeme. vdf Hochschulverlag AG, RTH Zürich.Google Scholar
  10. Müller, D. B. (2006). Stock dynamics for forecasting material flows—Case study housing in the Netherlands. Ecological Economics, 59(1), 142–159.CrossRefGoogle Scholar
  11. Pauliuk, S., & Müller, D. B. (2014). The role of in-use stocks in the social metabolism and in climate change mitigation. Global Environmental Change Part A: Human & Policy Dimensions, 24, 132–142. doi: 10.1016/j.gloenvcha.2013.11.006.CrossRefGoogle Scholar
  12. Rogall, H. (2009). Nachhaltige Ökonomie: Ökonomische Theorie und Praxis einer Nachhaltigen Entwicklung. 1st Aufl., Metropolis.Google Scholar
  13. Schiller, G. (2007). Urban infrastructure: Challenges for resource efficiency in the building stock. Building Research & Information, 35(4), 399–411.CrossRefGoogle Scholar
  14. Schiller, G., Ortlepp, R., Krauß, N., Steger, S., Schütz, H., Fernández, J. A., Reichenbach, J., Wagner, J., & Baumann, J. (2015). Kartierung des anthropogenen Lagers in Deutschland zur Optimierung der Sekundärrohstoffwirtschaft. Umweltbundesamt, Texte/UBA 83/15, Dessau-Roßlau., S. LIV, 261. http://www.umweltbundesamt.de/publikationen/kartierung-des-anthropogenen-lagers-in-deutschland.
  15. Schütz, H., & Bringezu, S. (2008): Ressourcenverbrauch von Deutschland – aktuelle Kennzahlen und Begriffsbestimmungen. Texte/UBA 02/08, Dessau-Roßlau.Google Scholar
  16. Siedentop, S., Schiller, G., Gutsche, J-.M., Koziol, M., & Walther, J. (2006). Siedlungsentwicklung und Infrastrukturfolgekosten – Bilanzierung und Strategieentwicklung. Forschungsprojekt im Auftrag des Bundesamtes für Bauwesen und Raumordnung sowie des Bundesministeriums für Verkehr, Bau- und Wohnungswesen. Abschlussbericht. BBR-Online-Publikation.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Leibniz Institute of Ecological Urban and Regional DevelopmentDresdenGermany

Personalised recommendations