Automatic Atlas-Based Segmentation of Brain White Matter in Neonates at Risk for Neurodevelopmental Disorders

  • L. Fonseca
  • C. van Pul
  • N. Lori
  • R. van den Boom
  • P. Andriessen
  • J. Buijs
  • A. VilanovaEmail author
Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)


Very preterm infants, < 32 weeks gestation, are at high risk for brain injury. Cognitive deficits are often diagnosed at a later stage, since there are no available predictive biomarkers in the neonatal period. The maturation of specific white matter (WM) brain structures is considered a promising early-stage biomarker. With Diffusion Tensor Imaging (DTI ) tractography , an in vivo and non-invasive evaluation of these anatomical structures is possible.

We developed an automatic tractography segmentation pipeline, which allows for maturation assessment of the different segmented WM structures. Our segmentation pipeline is atlas-based , specifically designed for premature neonates at term equivalent age. In order to better make use of global information from tractography , all processing is done in the fiber domain. Segmented fiber bundles are further automatically quantified with respect to volume and anisotropy. Of the 24 automatically segmented neonatal tractographies, only three contained more than 30% mislabeled fibers. Results show no dependency to WM pathology. By automatically segmenting WM, we reduced the user-dependency and bias characteristic of manual methods. This study assesses the structure of the neonatal brain based on an automatic WM segmentation in the fiber domain method using DTI tractography data.



We are grateful to Floris Groenendaal, Linda de Vries, and Manon Benders, that we are granted the re-use of the fiber atlas that part of our group developed in a previous study together with the Department of Neonatology, Wilhelmina Children’s Hospital/University Medical Center Utrecht. In addition, we thank Lauren O’Donnell for providing us with their fiber registration software.


  1. 1.
    Anjari, M., Srinivasan, L., Allsop, J., Hajnal, J., Rutherford, M., Edwards, A., Counsell, S.: Diffusion tensor imaging with tract-based spatial statistics reveals local white matter abnormalities in preterm infants. NeuroImage 35(3), 1021–1027 (2007)CrossRefGoogle Scholar
  2. 2.
    Basser, P.J., Mattiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imaging. Biophys. J. 66(1), 254–267 (1994)CrossRefGoogle Scholar
  3. 3.
    Dubois, J., Dehaene-Lambertz, G., Perrin, M., Mangin, J., Cointepas, Y., Duchesnay, E., Le Bihan, D., Hertz-Pannier, L.: Asynchrony of the early maturation of white matter bundles in healthy infants: quantitative landmarks revealed noninvasively by diffusion tensor imaging. Hum. Brain Mapp. 29, 14–27 (2008)CrossRefGoogle Scholar
  4. 4.
    Durrleman, S., Pennec, X., Trouvé, A., Ayache, N.: Statistical models of sets of curves and surfaces based on currents. Med. Image Anal. 13(5), 793–808 (2009)CrossRefGoogle Scholar
  5. 5.
    Frey, B., Dueck, D.: Clustering by passing messages between data points. Science 315, 972 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Garyfallidis, E., Brett, M., Correia, M.M., Williams, G.B., Nimmo-Smith, I.: Quickbundles, a method for tractography simplification. Front. Neurosci. 6, 175 (2012)CrossRefGoogle Scholar
  7. 7.
    Garyfallidis, E., Ocegueda, O., Wassermann, D., Descoteaux, M.: Robust and efficient linear registration of white-matter fascicles in the space of streamlines. NeuroImage 117, 124–140 (2015)CrossRefGoogle Scholar
  8. 8.
    Geng, X., Gouttard, S., Sharma, A., Gu, H., Styner, M., Lin, W., Gerig, G., Gilmore, J.H.: Quantitative tract-based white matter development from birth to age 2 years. NeuroImage 61(3), 524–557 (2012)CrossRefGoogle Scholar
  9. 9.
    Glass, H., Bonifacio, S., Shimotake, T., Ferriero, D.: Neurocritical care for neonates. Pediatr. Neurol. - Curr. Treat. Opt. Neurol. 13, 574–589 (2011)CrossRefGoogle Scholar
  10. 10.
    Guevara, P., Duclap, D., Poupon, C., Marrakchi-Kacem, L., Fillard, P., Le Bihan, D., Mangin, J.: Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas. NeuroImage 61, 1083–1099 (2012)CrossRefGoogle Scholar
  11. 11.
    Hua, K., Zhang, J., Wakana, S., Jiang, H., Li, X., Reich, D., Calabresi, P., Pekar, J., van Zijl, P., Mori, S.: Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantification. NeuroImage 39, 336–347 (2008)CrossRefGoogle Scholar
  12. 12.
    Huppi, P., Dubois, J.: Diffusion tensor imaging of brain development. In: Seminars in Fetal & Neonatal Medicine, vol. 11, pp. 489–497 (2006)Google Scholar
  13. 13.
    Jong, M., Verhoeven, M., Baar, A.: School outcome, cognitive functioning, and behavior problems in moderate and late preterm children and adults: a review. In: Seminars in Fetal & Neonatal Medicine, vol. 17, pp. 163–169 (2012)Google Scholar
  14. 14.
    Kooij, B.: MRI analysis and neurodevelopmental outcome in preterm infants. PhD thesis, Utrecht University (2011)Google Scholar
  15. 15.
    Labra, N., Guevara, P., Duclap, D., Houenou, J., Poupon, C., Mangin, J.F., Figueroa, M.: Fast automatic segmentation of white matter streamlines based on a multi-subject bundle atlas. Neuroinformatics 15(1), 71–86 (2017). doi: 10.1007/s12021-016-9316-7CrossRefGoogle Scholar
  16. 16.
    Latal, B.: Prediction of neurodevelopmental outcome after preterm birth. Ped. Neuro 40, 413–419 (2009)CrossRefGoogle Scholar
  17. 17.
    Leemans, A., Jones, D.: A new approach to fully automated fiber tract clustering using affinity propagation. In: ISMRM, p. 17 (2009)Google Scholar
  18. 18.
    Leemans, A., Sijbers, J., De Backer, S., Vandervliet, E., Parizel, P.: Multiscale white matter fiber tract coregistration: a new feature-based approach to align diffusion tensor data. Magn. Reson. Med. 55, 1414–1423 (2006)CrossRefGoogle Scholar
  19. 19.
    Maddah, M., Grimson, W.E.L., Warfield, S.K., Wells, W.M.: A unified framework for clustering and quantitative analysis of white matter fiber tracts. Med. Image Anal. 12(2), 191–202 (2008)CrossRefGoogle Scholar
  20. 20.
    Mayer, A., Zimmerman-Moreno, G., Shadmi, R., Batikoff, A., Greenspan, H.: A supervised framework for the registration and segmentation of white matter fiber tracts. IEEE Trans. Med. Imag. 30, 1 (2011)CrossRefGoogle Scholar
  21. 21.
    Moberts, B., Vilanova, A., van Wijk, J.J.: Evaluation of fiber clustering methods for diffusion tensor imaging. In: IEEE Visualization, pp. 65–72 (2005)Google Scholar
  22. 22.
    Mori, S., Zijl, P.: Fiber tracking: principles and strategies - a technical review. NMR Biomed. 15, 468–480 (2002)CrossRefGoogle Scholar
  23. 23.
    Mori, S., Wakana, S., Nagae-Poetscher, L., Zijl, P.: MRI Atlas of Human White Matter. Elsevier, Amsterdam (2005)Google Scholar
  24. 24.
    Neil, J., Miller, J., Mukherjee, P., Hüppi, P.S.: Diffusion tensor imaging of normal and injured developing human brain - a technical review. NMR Biomed. 15, 543–552 (2002)CrossRefGoogle Scholar
  25. 25.
    O’Donnell, L., Westin, C.: Automatic tractography segmentation using a high-dimensional white matter atlas. IEEE Trans. Med. Imag. 26(11), 1562–1575 (2007)CrossRefGoogle Scholar
  26. 26.
    O’Donnell, L., Wells, W., Golby, A., Westin, C.: Unbiased groupwise registration of white matter tractography. In: MICCAI, vol. III, pp. 123–130 (2012)Google Scholar
  27. 27.
    Olivetti, E., Nguyen, T.B., Garyfallidis, E.: The approximation of the dissimilarity projection. In: 2012 International Workshop on Pattern Recognition in NeuroImaging (PRNI), pp. 85–88. IEEE, New York (2012)Google Scholar
  28. 28.
    Powell, M.J.D.: Direct search algorithms for optimization calculations. Acta Numer. 7, 287–336 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Pul, C., Buijs, J., Vilanova, A., Roos, G., Wijn, P.: Infants with perinatal hypoxic ischemia: feasibility of fiber tracking at birth and 3 months. Radiology 240, 203–214 (2006)CrossRefGoogle Scholar
  30. 30.
    Pul, C., Kooij, B., Vries, L., Benders, M., Vilanova, A., Groenendaal, F.: Quantitative fiber tracking in the corpus callosum and internal capsule reveals microstructural abnormalities in preterm infants at term-equivalent age. AJNR Am. J. Neuroradiol. 33, 678–684 (2012)CrossRefGoogle Scholar
  31. 31.
    Ratnarajah, N., Qiu, A.: Multi-label segmentation of white matter structures: application to neonatal brains. NeuroImage 102, 913–922 (2014)CrossRefGoogle Scholar
  32. 32.
    Rose, J., Vassar, R., Cahill-Rowley, K., Guzman, X., Stevenson, D., Barnea-Goraly, N.: Brain microstructural development at near-term age in very-low-birth-weight preterm infants: an atlas-based diffusion imaging study. NeuroImage 86, 244–256 (2014)CrossRefGoogle Scholar
  33. 33.
    Saigal, S., Doyle, L.: An overview of mortality and sequelae of preterm birth from infancy to adulthood. Lancet 371(9608), 261–269 (2008)CrossRefGoogle Scholar
  34. 34.
    Shankaran, S., Barnes, P., Hintz, S., Laptook, A., Zaterka-Baxter, K., McDonald, S., Ehrenkranz, R., Walsh, M., Tyson, J., Donovan, E., Goldberg, R., Bara, R., Das, A., Finer, N., Sanchez, P., Poindexter, B., Van Meurs, K., Carlo, W., Stoll, B., Duara, S., Guillet, R., Higgins, R.: Eunice kennedy shriver national institute of child health and human development neonatal research network.brain injury following trial of hypothermia for neonatal hypoxic-ischaemic encephalopathy. Arch. Dis. Child Fetal Neonatal Ed. 97(6), F398–404 (2012)Google Scholar
  35. 35.
    Shannon, C.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Vilanova, A., Berenschot, G., van Pul, C.: DTI visualization with streamsurfaces and evenly-spaced volume seeding. In: Joint Eurographics - IEEE TCVG Symposium on Visualization, pp. 173–182 (2004)Google Scholar
  37. 37.
    Vincent, L.: Morphological grayscale reconstruction in image analysis: applications and efficient algorithms. IEEE Trans. Image Process. 2(2), 176–201 (1993)CrossRefGoogle Scholar
  38. 38.
    Volpe, J.: Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol. 8, 110–124 (2009)CrossRefGoogle Scholar
  39. 39.
    Wakana, S., Jiang, H., Nagae-Poetscher, L., van Zijl, P., Mori, S.: Fiber tract-based atlas of human white matter anatomy. Radiology 230, 77–87 (2004)CrossRefGoogle Scholar
  40. 40.
    Wang, R., Benner, T., Wedeen, V.: Diffusion toolkit: a software package for diffusion imaging data processing and tractograph. In: ISMRM, vol. 15, p. 3720 (2007)Google Scholar
  41. 41.
    Wang, X., Grimson, W.E.L., Westin, C.-F.: Tractography segmentation using a hierarchical dirichlet processes mixture model. NeuroImage 54(1), 290–302 (2011)CrossRefGoogle Scholar
  42. 42.
    Wassermann, D., Bloyb, L., Kanterakisb, E., Vermab, R., Derichea, R.: Unsupervised white matter fiber clustering and tract probability map generation: applications of a gaussian process framework for white matter fibers. NeuroImage 15(1), 228–241 (2010)CrossRefGoogle Scholar
  43. 43.
    Westin, C.-F., Maier, S., Khidhir, B., Everett, P., Jolesz, F., Kikinis, R.: Image processing for diffusion tensor magnetic resonance imaging. In: MICCAI. Lecture Notes in Computer Science, vol. 1679, pp. 441–452. Springer, New York (1999)Google Scholar
  44. 44.
    Woodward, L., Anderson, P., Austin, N., Howard, K., Inder, T.: Neonatal mri to predict neurodevelopmental outcomes in preterm infants. New Engl. J. Med. 355(7), 685–694 (2006)CrossRefGoogle Scholar
  45. 45.
    Zhai, G., Lin, W., Wilber, K., Gerig, G., Gilmore, J.: Comparisons of regional white matter diffusion in healthy neonates and adults performed with a 3.0-t head-only mr imaging unit. Radiology 229, 673–681 (2003)CrossRefGoogle Scholar
  46. 46.
    Zvitia, O., Mayer, A., Shadmi, R., Miron, S., Greenspan, H.: Co-registration of white matter tractographies by adaptive-mean-shift and Gaussian mixture modeling. IEEE Trans. Med. Imag. 29(1), 132–145 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • L. Fonseca
    • 1
  • C. van Pul
    • 2
    • 3
  • N. Lori
    • 4
    • 5
  • R. van den Boom
    • 1
  • P. Andriessen
    • 6
  • J. Buijs
    • 6
  • A. Vilanova
    • 7
    • 1
    Email author
  1. 1.Medical Image AnalysisEindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.Clinical Physics, Máxima Medical CenterVeldhovenThe Netherlands
  3. 3.School of Medical Physics and Engineering, Eindhoven University of TechnologyEindhovenThe Netherlands
  4. 4.LANEN, INECO, INCYT (Favaloro-CONICET)RosarioArgentina
  5. 5.Centre Algoritmi, University of MinhoBragaPortugal
  6. 6.Neonatology Maxima Medical CenterVeldhovenThe Netherlands
  7. 7.Computer Graphics and Visualization, Delft University of TechnologyDelftThe Netherlands

Personalised recommendations