Abstract
Diffusion magnetic resonance provides a non-invasive probe of material structure at the micro-scale in porous media including emulsions, rocks, catalysts and biological tissue. The quantification of microscopic anisotropy aims to reflect the size and shape of individual pores, separating the effect of their orientation distribution in the imaging voxel, which is of great importance in many applications.
The single diffusion encoding (SDE) sequence, which consists of a pair of diffusion gradients applied before and after the refocusing pulse in a spin-echo preparation, is the standard pulse sequence for acquiring diffusion MRI data. SDE sequences, which have one gradient orientation per measurement, have been used in various studies to estimate microscopic anisotropy, mainly assuming that the underlying substrate consists of identical pores. In order to discriminate between more complex systems, which may include pores of various sizes and shapes, more sophisticated techniques which use diffusion gradients with varying orientation within one measurement, such as double diffusion encoding, isotropic encoding or q-space trajectory imaging, have been proposed in the literature. In addition to the these techniques which aim to estimate microscopic anisotropy, a different approach to characterize pore shape directly is to take the inverse Fourier transform of the reciprocal pore shape function which can be measured with diffusion gradients that are highly asymmetric.
This work provides a review of various diffusion magnetic resonance techniques which have been proposed in the literature to measure the microscopic shape of pores, both in material science as well as in biomedical imaging.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alexander, D.C.: A general framework for experiment design in diffusion MRI and its application in measuring direct tissue-microstructure features. Magn. Reson. Med. 60, 439–448 (2008)
Anderson, A.W.: Measurement of fiber orientation distributions using high angular resolution diffusion imaging. Magn. Reson. Med. 54, 1194–1206 (2005)
Basser, P.J., Pierpaoli, C.: Microstructural and physiological features of tissues elucidated by quantitative diffusion tensor MRI. J. Magn. Reson. B 111, 209–19 (1996)
Bernin, D., Koch, V., Nydén, M., Topgaard, D.: Multi-scale characterization of lyotropic liquid crystals using2H and diffusion MRI with spatial resolution in three dimensions. PLoS One 9, e98752 (2014)
Callaghan, P.T.: Pulsed-gradient spin-echo NMR for planar, cylindrical and spherical pores under conditions of wall relaxation. J. Magn. Reson. 113, 53–59 (1995)
Callaghan, P.T., Furo, I.: Diffusion-diffusion correlation and exchange as a signature for local order and dynamics. J. Chem. Phys. 120, 4032–4037 (2004)
Callaghan, P.T., Komlosh, M.E.: Locally anisotropic motion in a macroscopically isotropic system: displacement correlations measured using double pulsed gradient spin-echo NMR. Magn. Reson. Chem. 40, 15–19 (2002)
Callaghan, P.T., Söderman, O.: Examination of the lamellar phase of aerosol OT/water using pulsed field gradient nuclear magnetic resonance. J. Phys. Chem. 87, 7737–1744 (1983)
Callaghan, P.T., Jolley, K.W., Lelievre, J.: Diffusion of water in the endosperm tissue of wheat grains as studied by pulsed field gradient nuclear magnetic resonance. Biophys. J. 28, 133–141 (1979)
Callaghan, P.T., Coy, A., MacGowan, D., Packer, K.J., Zelaya, F.O.: Diffraction-like effects in NMR diffusion studies of fluids in porous solids. Nature 351, 467–469 (1991)
Cheng, Y., Cory, D.: Multiple scattering by NMR. J. Am. Chem. Soc. 121, 7935–7396 (1999)
Cory, D.G., Garroway, A.N., Miller, J.B.: Applications of spin transport as a probe of local geometry. Polym. Prepr. 31, 149–150 (1990)
de Almeida Martins, J.P., Topgaard, D.: Two-dimensional correlation of isotropic and directional diffusion using NMR. Phys. Rev. Lett. 116, 087601 (2016)
Drobnjak, I., Alexander, D.C.: Optimising time-varying gradient orientation for microstructure sensitivity in diffusion-weighted MR. J. Magn. Reson. 212, 344–354 (2011)
Drobnjak, I., Zhang, H., Hall, M.G., Alexander, D.C.: The matrix formalism for generalised gradients with time-varying orientation in diffusion NMR. J. Magn. Reson. 210, 151–157 (2011)
Eriksson, S., Lasic̆, S., Topgaard, D.: Isotropic diffusion weighting in PGSE NMr by magic-angle spinning of the q-vector. J. Magn. Reson. 226, 13–8 (2013)
Eriksson, S., Lasic̆, S., Nilsson, M., Westin, C.F., Topgaard, D.: NMR diffusion-encoding with axial symmetry and variable anisotropy: distinguishing between prolate and oblate microscopic diffusion tensors with unknown orientation distribution. J. Chem. Phys. 142, 104201 (2015)
Grebenkov, D.: NMR survey of reflected Brownian motion. Rev. Mod. Phys. 79, 1077–1137 (2007)
Ianuş, A., Shemesh, N., Alexander, D.C., Drobnjak, I.: Double oscillating diffusion encoding and sensitivity to microscopic anisotropy. Magn. Reson. Med. (2016). Early view
Ianuş, A., Alexander, D.C., Drobnjak, I.: Microstructure imaging sequence simulation toolbox. In: Proceedings of SASHIMI workshop of MICCAI, Athens (2016)
Ianuş, A., Drobnjak, I., Alexander, D.C.: Model-based estimation of microscopic anisotropy using diffusion MRI: a simulation study. NMR Biomed. 29, 627–685 (2016)
Jespersen, S.N., Lundell, H., Sonderby, C.K., Dyrby, T.B.: Orientationally invariant metrics of apparent compartment eccentricity from double pulsed field gradient diffusion experiments. NMR Biomed. 26, 1647–1662 (2013)
Kaden, E., Kruggel, F., Alexander, D.C.: Quantitative mapping of the per-axon diffusion coefficients in brain white matter. Magn. Reson. Med. 75, 1752–63 (2015)
Kaden, E., Kelm, N.D., Carson, R.P., Does, M.D., Alexander, D.C.: Multi-compartment microscopic diffusion imaging. NeuroImage 139, 346–359 (2016)
Koch, M.A., Finsterbusch, J.: Compartment size estimation with double wave vector diffusion-weighted imaging. Magn. Reson. Med. 60, 90–101 (2008)
Koch, M.A., Finsterbusch, J.: Numerical simulation of double-wave vector experiments investigating diffusion in randomly oriented ellipsoidal pores. Magn. Reson. Med. 62, 247–254 (2009)
Komlosh, M.E., Horkay, F., Freidlin, R.Z., Nevo, U., Assaf, Y., Basser, P.J.: Detection of microscopic anisotropy in gray matter and in a novel tissue phantom using double pulsed gradient spin echo MR. J. Magn. Reson. 189, 38–45 (2007)
Komlosh, M.E., Lizak, M.J., Horkay, F., Freidlin, R.Z., Basser, P.J.: Observation of microscopic diffusion anisotropy in the spinal cord using double-pulsed gradient spin echo MRI. Magn. Reson. Med. 59, 803–809 (2008)
Kuder, T.A., Laun, F.B.: NMR-based diffusion pore imaging by double wave vector measurements. Magn. Reson. Med. 70, 836–841 (2013)
Kuder, T.A., Laun, F.B.: Effects of pore-size and shape distributions on diffusion pore imaging by nuclear magnetic resonance. Phys. Rev. Lett. 92, 022706 (2015)
Kuder, T.A., Bachert, P., Windschuh, J., Laun, F.B.: Diffusion pore imaging by hyperpolarized xenon-129 nuclear magnetic resonance. Phys. Rev. Lett. 111, 028101 (2013)
Lasič, S., Szczepankiewicz, F., Eriksson, S., Nilsson, M., Topgaard, D.: Microanisotropy imaging: quantification of microscopic diffusion anisotropy and orientational order parameter by diffusion MRI with magic-angle spinning of the q-vector. Front. Phys. 2, 11 (2014)
Laun, F.B., Kuder, T.A.: Diffusion pore imaging with generalized temporal gradient profiles. Magn. Reson. Imaging 31, 1236–44 (2013)
Laun, F.B., Kuder, T.A., Semmler, W., Stieltjes, B.: Determination of the defining boundary in nuclear magnetic resonance diffusion experiments. Phys. Rev. Lett. 107, 048102 (2011)
Lawrenz, M., Finsterbusch, J.: Double-wave-vector diffusion-weighted imaging reveals microscopic diffusion anisotropy in the living human brain. Magn. Reson. Med. 69, 1072–1082 (2013)
Lawrenz, M., Finsterbusch, J.: Mapping measures of microscopic diffusion anisotropy in human brain white matter in vivo with double-wave-vector diffusion-weighted imaging. Magn. Reson. Med. (2014). Early view
Lawrenz, M., Koch, M.A., Finsterbusch, J.: A tensor model and measures of microscopic anisotropy for double-wave-vector diffusion-weighting experiments with long mixing times. J. Magn. Reson. 202, 43–56 (2010)
Lawrenz, M., Brassen, S., Finsterbusch, J.: Microscopic diffusion anisotropy in the human brain: Age-related changes. NeuroImage 141, 313–325 (2016)
Mitra, P.P.: Multiple wave-vector extensions of the NMR pulsed-field-gradient spin-echo diffusion measurement. Phys. Rev. B 51(21), 15074–15078 (1995)
Mori, S., van Zijl, P.C.M.: Diffusion weighting by the trace of the diffusion tensor within a single scan. Magn. Reson. Med. 33, 41–52 (1995)
Neuman, C.H.: Spin echo of spins diffusing in a bounded medium. J. Chem. Phys. 60, 4508–4511 (1974)
Özarslan, E.: Compartment shape anisotropy (CSA) revealed by double pulsed field gradient MR. J. Magn. Reson. 199, 56–67 (2009)
Özarslan, E., Basser, P.J.: MR diffusion/diffraction phenomenon in multi-pulse-field-gradient experiments. J. Magn. Reson. 188, 285–294 (2007)
Özarslan, E., Besser, P.J.: Microscopic anisotropy revealed by NMR double pulsed field gradient experiments with arbitrary timing parameters. J. Chem. Phys. 128, 154511 (2009)
Özarslan, E., Shemesh, N., Basser, P.J.: A general framework to quantify the effect of restricted diffusion on the NMR signal with applications to double pulsed field gradient NMR experiments. J. Chem. Phys. 130, 104702 (2009)
Shemesh, N., Cohen, Y.: Microscopic and compartment shape anisotropies in grey and white matter revealed by angular bipolar double-PFG. Magn. Reson. Med. 65, 1216–1227 (2011)
Shemesh, N., Özarslan, E., Basser, P.J., Cohen, Y.: Detecting diffusion-diffraction patterns in size distribution phantoms using double-pulsed field gradient NMR: theory and experiments. J. Chem. Phys. 132, 034703 (2010)
Shemesh, N., Özarslan, E., Adiri, T., Basser, P.J., Cohen, Y.: Noninvasive bipolar double-pulsed-field-gradient NMR reveals signatures for pore size and shape in polydisperse, randomly oriented, inhomogeneous porous media. J. Chem. Phys. 133, 044705 (2010)
Shemesh, N., Özarslan, E., Basser, P.J., Cohen, Y.: Accurate noninvasive measurement of cell size and compartment shape anisotropy in yeast cells using double-pulsed field gradient MR. NMR Biomed. 25, 236–246 (2011)
Shemesh, N., Westin, C.-F., Cohen, Y.: Magnetic resonance imaging by synergistic diffusion-diffraction patterns. Phys. Rev. Lett. 108, 058103 (2012)
Shemesh, N., Barazany, D., Sadan, O., Bar, L., Zur, Y., Barhum, Y., Sochen, N., Offen, D., Assaf, Y., Cohen, Y.: Mapping apparent eccentricity and residual ensemble anisotropy in the gray matter using angular double-pulsed-field-gradient MRI. Magn. Reson. Med. 68, 795–806 (2012)
Shemesh, N., Jespersen, S.N., Alexander, D.C., Cohen, Y., Drobnjak, I., Dyrby, T.B., Finsterbusch, J., Koch, M.A., Kuder, T., Laun, F., Lawrenz, M., Lundell, H., Mitra, P.P., Nilsson, M., Özarslan, E., Topgaard, D., Westin, C.F.: Conventions and nomenclature for double diffusion encoding (DDE) NMR and MRI. Magn. Reson. Med. 75, 82–87 (2016)
Siow, B., Drobnjak, I., Chatterjee, A., Lythgoe, M.F., Alexander, D.C.: Estimation of pore size in a microstructure phantom using the optimised gradient waveform diffusion weighted NMR sequence. J. Magn. Reson. 214, 51–60 (2012)
Siow, B., Drobnjak, I., Ianuş, A., Christie, I.N., Lythgoe, M.F., Alexander, D.C.: Axon radius estimation with oscillating gradient spin echo (OGSE) diffusion MRI. Diffus. Fundam. 18, 1–6 (2013)
Sjölund, J., Szczepankiewicz, F., Nilsson, M., Topgaard, D., Westin, C.F., Knutsson, H.: Constrained optimization of gradient waveforms for generalized diffusion encoding. J. Magn. Reson. 261, 157–68 (2015)
Stejskal, E.O.: Use of spin echoes in a pulsed magnetic-field gradient to study anisotropic, restricted diffusion and flow. J. Chem. Phys. 43, 3597–3603 (1965)
Stejskal, E.O., Tanner, T.E.: Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J. Chem. Phys. 42, 288–292 (1965)
Szczepankiewicz, F., Lasič, S., van Westen, D., Sundgren, P.C., Englund, E., Westin, C.F., Ståhlberg, F., Lätt, J., Topgaard, D., Nilsson, M.: Quantification of microscopic diffusion anisotropy disentangles effects of orientation dispersion from microstructure: applications in healthy volunteers and in brain tumors. NeuroImage 104, 241–52 (2015)
Szczepankiewicz, F., van Westen, D., Englund, E., Westin, C.F., Ståhlberg, F.: Lätt, J., Sundgren, P.C., Nilsson, M.: The link between diffusion MRI and tumor heterogeneity: mapping cell eccentricity and density by diffusional variance decomposition (DIVIDE). NeuroImage (2016). Early view
Topgaard, D., Söderman, O.: Self-diffusion in two- and three-dimensional powders of anisotropic domains: an NMR study of the diffusion of water in cellulose and starch. J. Phys. Chem. 106, 11887–11892 (2002)
Westin, C.F., Szczepankiewicz, F., Pasternak, O., Özarslan, E., Topgaard, D., Knutsson, H., Nilsson, M.: Measurement tensors in diffusion MRI: generalizing the concept of diffusion encoding. In: Proceedings of MICCAI, Boston, pp. 209–216. Springer, Berlin (2014)
Westin, C.F., Knutsson, H., Pasternak, O., Szczepankiewicz, F., Özarslan, E., van Westen, D., Mattisson, C., Bogren, M., O’Donnell, L.J., Kubicki, M., Topgaard, D., Nilsson, M.: Q-space trajectory imaging for multidimensional diffusion MRI of the human brain. NeuroImage 135, 345–362 (2016)
Acknowledgements
This study was supported by EPSRC grants M507970, G007748, H046410, K020439, and M020533 and the Leverhulme trust. Funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 657366 supports NS’s work on this topic.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Ianuş, A., Shemesh, N., Alexander, D.C., Drobnjak, I. (2017). Measuring Microscopic Anisotropy with Diffusion Magnetic Resonance: From Material Science to Biomedical Imaging. In: Schultz, T., Özarslan, E., Hotz, I. (eds) Modeling, Analysis, and Visualization of Anisotropy. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-61358-1_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-61358-1_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-61357-4
Online ISBN: 978-3-319-61358-1
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)