Skip to main content

Measuring Microscopic Anisotropy with Diffusion Magnetic Resonance: From Material Science to Biomedical Imaging

  • Conference paper
  • First Online:
Modeling, Analysis, and Visualization of Anisotropy

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

Diffusion magnetic resonance provides a non-invasive probe of material structure at the micro-scale in porous media including emulsions, rocks, catalysts and biological tissue. The quantification of microscopic anisotropy aims to reflect the size and shape of individual pores, separating the effect of their orientation distribution in the imaging voxel, which is of great importance in many applications.

The single diffusion encoding (SDE) sequence, which consists of a pair of diffusion gradients applied before and after the refocusing pulse in a spin-echo preparation, is the standard pulse sequence for acquiring diffusion MRI data. SDE sequences, which have one gradient orientation per measurement, have been used in various studies to estimate microscopic anisotropy, mainly assuming that the underlying substrate consists of identical pores. In order to discriminate between more complex systems, which may include pores of various sizes and shapes, more sophisticated techniques which use diffusion gradients with varying orientation within one measurement, such as double diffusion encoding, isotropic encoding or q-space trajectory imaging, have been proposed in the literature. In addition to the these techniques which aim to estimate microscopic anisotropy, a different approach to characterize pore shape directly is to take the inverse Fourier transform of the reciprocal pore shape function which can be measured with diffusion gradients that are highly asymmetric.

This work provides a review of various diffusion magnetic resonance techniques which have been proposed in the literature to measure the microscopic shape of pores, both in material science as well as in biomedical imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alexander, D.C.: A general framework for experiment design in diffusion MRI and its application in measuring direct tissue-microstructure features. Magn. Reson. Med. 60, 439–448 (2008)

    Article  Google Scholar 

  2. Anderson, A.W.: Measurement of fiber orientation distributions using high angular resolution diffusion imaging. Magn. Reson. Med. 54, 1194–1206 (2005)

    Article  Google Scholar 

  3. Basser, P.J., Pierpaoli, C.: Microstructural and physiological features of tissues elucidated by quantitative diffusion tensor MRI. J. Magn. Reson. B 111, 209–19 (1996)

    Article  Google Scholar 

  4. Bernin, D., Koch, V., Nydén, M., Topgaard, D.: Multi-scale characterization of lyotropic liquid crystals using2H and diffusion MRI with spatial resolution in three dimensions. PLoS One 9, e98752 (2014)

    Article  Google Scholar 

  5. Callaghan, P.T.: Pulsed-gradient spin-echo NMR for planar, cylindrical and spherical pores under conditions of wall relaxation. J. Magn. Reson. 113, 53–59 (1995)

    Article  Google Scholar 

  6. Callaghan, P.T., Furo, I.: Diffusion-diffusion correlation and exchange as a signature for local order and dynamics. J. Chem. Phys. 120, 4032–4037 (2004)

    Article  Google Scholar 

  7. Callaghan, P.T., Komlosh, M.E.: Locally anisotropic motion in a macroscopically isotropic system: displacement correlations measured using double pulsed gradient spin-echo NMR. Magn. Reson. Chem. 40, 15–19 (2002)

    Article  Google Scholar 

  8. Callaghan, P.T., Söderman, O.: Examination of the lamellar phase of aerosol OT/water using pulsed field gradient nuclear magnetic resonance. J. Phys. Chem. 87, 7737–1744 (1983)

    Article  Google Scholar 

  9. Callaghan, P.T., Jolley, K.W., Lelievre, J.: Diffusion of water in the endosperm tissue of wheat grains as studied by pulsed field gradient nuclear magnetic resonance. Biophys. J. 28, 133–141 (1979)

    Article  Google Scholar 

  10. Callaghan, P.T., Coy, A., MacGowan, D., Packer, K.J., Zelaya, F.O.: Diffraction-like effects in NMR diffusion studies of fluids in porous solids. Nature 351, 467–469 (1991)

    Article  Google Scholar 

  11. Cheng, Y., Cory, D.: Multiple scattering by NMR. J. Am. Chem. Soc. 121, 7935–7396 (1999)

    Article  Google Scholar 

  12. Cory, D.G., Garroway, A.N., Miller, J.B.: Applications of spin transport as a probe of local geometry. Polym. Prepr. 31, 149–150 (1990)

    Google Scholar 

  13. de Almeida Martins, J.P., Topgaard, D.: Two-dimensional correlation of isotropic and directional diffusion using NMR. Phys. Rev. Lett. 116, 087601 (2016)

    Article  Google Scholar 

  14. Drobnjak, I., Alexander, D.C.: Optimising time-varying gradient orientation for microstructure sensitivity in diffusion-weighted MR. J. Magn. Reson. 212, 344–354 (2011)

    Article  Google Scholar 

  15. Drobnjak, I., Zhang, H., Hall, M.G., Alexander, D.C.: The matrix formalism for generalised gradients with time-varying orientation in diffusion NMR. J. Magn. Reson. 210, 151–157 (2011)

    Article  Google Scholar 

  16. Eriksson, S., Lasic̆, S., Topgaard, D.: Isotropic diffusion weighting in PGSE NMr by magic-angle spinning of the q-vector. J. Magn. Reson. 226, 13–8 (2013)

    Google Scholar 

  17. Eriksson, S., Lasic̆, S., Nilsson, M., Westin, C.F., Topgaard, D.: NMR diffusion-encoding with axial symmetry and variable anisotropy: distinguishing between prolate and oblate microscopic diffusion tensors with unknown orientation distribution. J. Chem. Phys. 142, 104201 (2015)

    Google Scholar 

  18. Grebenkov, D.: NMR survey of reflected Brownian motion. Rev. Mod. Phys. 79, 1077–1137 (2007)

    Article  Google Scholar 

  19. Ianuş, A., Shemesh, N., Alexander, D.C., Drobnjak, I.: Double oscillating diffusion encoding and sensitivity to microscopic anisotropy. Magn. Reson. Med. (2016). Early view

    Google Scholar 

  20. Ianuş, A., Alexander, D.C., Drobnjak, I.: Microstructure imaging sequence simulation toolbox. In: Proceedings of SASHIMI workshop of MICCAI, Athens (2016)

    Book  Google Scholar 

  21. Ianuş, A., Drobnjak, I., Alexander, D.C.: Model-based estimation of microscopic anisotropy using diffusion MRI: a simulation study. NMR Biomed. 29, 627–685 (2016)

    Google Scholar 

  22. Jespersen, S.N., Lundell, H., Sonderby, C.K., Dyrby, T.B.: Orientationally invariant metrics of apparent compartment eccentricity from double pulsed field gradient diffusion experiments. NMR Biomed. 26, 1647–1662 (2013)

    Article  Google Scholar 

  23. Kaden, E., Kruggel, F., Alexander, D.C.: Quantitative mapping of the per-axon diffusion coefficients in brain white matter. Magn. Reson. Med. 75, 1752–63 (2015)

    Article  Google Scholar 

  24. Kaden, E., Kelm, N.D., Carson, R.P., Does, M.D., Alexander, D.C.: Multi-compartment microscopic diffusion imaging. NeuroImage 139, 346–359 (2016)

    Article  Google Scholar 

  25. Koch, M.A., Finsterbusch, J.: Compartment size estimation with double wave vector diffusion-weighted imaging. Magn. Reson. Med. 60, 90–101 (2008)

    Article  Google Scholar 

  26. Koch, M.A., Finsterbusch, J.: Numerical simulation of double-wave vector experiments investigating diffusion in randomly oriented ellipsoidal pores. Magn. Reson. Med. 62, 247–254 (2009)

    Article  Google Scholar 

  27. Komlosh, M.E., Horkay, F., Freidlin, R.Z., Nevo, U., Assaf, Y., Basser, P.J.: Detection of microscopic anisotropy in gray matter and in a novel tissue phantom using double pulsed gradient spin echo MR. J. Magn. Reson. 189, 38–45 (2007)

    Article  Google Scholar 

  28. Komlosh, M.E., Lizak, M.J., Horkay, F., Freidlin, R.Z., Basser, P.J.: Observation of microscopic diffusion anisotropy in the spinal cord using double-pulsed gradient spin echo MRI. Magn. Reson. Med. 59, 803–809 (2008)

    Article  Google Scholar 

  29. Kuder, T.A., Laun, F.B.: NMR-based diffusion pore imaging by double wave vector measurements. Magn. Reson. Med. 70, 836–841 (2013)

    Article  Google Scholar 

  30. Kuder, T.A., Laun, F.B.: Effects of pore-size and shape distributions on diffusion pore imaging by nuclear magnetic resonance. Phys. Rev. Lett. 92, 022706 (2015)

    MathSciNet  Google Scholar 

  31. Kuder, T.A., Bachert, P., Windschuh, J., Laun, F.B.: Diffusion pore imaging by hyperpolarized xenon-129 nuclear magnetic resonance. Phys. Rev. Lett. 111, 028101 (2013)

    Article  Google Scholar 

  32. Lasič, S., Szczepankiewicz, F., Eriksson, S., Nilsson, M., Topgaard, D.: Microanisotropy imaging: quantification of microscopic diffusion anisotropy and orientational order parameter by diffusion MRI with magic-angle spinning of the q-vector. Front. Phys. 2, 11 (2014)

    Google Scholar 

  33. Laun, F.B., Kuder, T.A.: Diffusion pore imaging with generalized temporal gradient profiles. Magn. Reson. Imaging 31, 1236–44 (2013)

    Article  Google Scholar 

  34. Laun, F.B., Kuder, T.A., Semmler, W., Stieltjes, B.: Determination of the defining boundary in nuclear magnetic resonance diffusion experiments. Phys. Rev. Lett. 107, 048102 (2011)

    Article  Google Scholar 

  35. Lawrenz, M., Finsterbusch, J.: Double-wave-vector diffusion-weighted imaging reveals microscopic diffusion anisotropy in the living human brain. Magn. Reson. Med. 69, 1072–1082 (2013)

    Article  Google Scholar 

  36. Lawrenz, M., Finsterbusch, J.: Mapping measures of microscopic diffusion anisotropy in human brain white matter in vivo with double-wave-vector diffusion-weighted imaging. Magn. Reson. Med. (2014). Early view

    Google Scholar 

  37. Lawrenz, M., Koch, M.A., Finsterbusch, J.: A tensor model and measures of microscopic anisotropy for double-wave-vector diffusion-weighting experiments with long mixing times. J. Magn. Reson. 202, 43–56 (2010)

    Article  Google Scholar 

  38. Lawrenz, M., Brassen, S., Finsterbusch, J.: Microscopic diffusion anisotropy in the human brain: Age-related changes. NeuroImage 141, 313–325 (2016)

    Article  Google Scholar 

  39. Mitra, P.P.: Multiple wave-vector extensions of the NMR pulsed-field-gradient spin-echo diffusion measurement. Phys. Rev. B 51(21), 15074–15078 (1995)

    Article  Google Scholar 

  40. Mori, S., van Zijl, P.C.M.: Diffusion weighting by the trace of the diffusion tensor within a single scan. Magn. Reson. Med. 33, 41–52 (1995)

    Article  Google Scholar 

  41. Neuman, C.H.: Spin echo of spins diffusing in a bounded medium. J. Chem. Phys. 60, 4508–4511 (1974)

    Article  Google Scholar 

  42. Özarslan, E.: Compartment shape anisotropy (CSA) revealed by double pulsed field gradient MR. J. Magn. Reson. 199, 56–67 (2009)

    Article  Google Scholar 

  43. Özarslan, E., Basser, P.J.: MR diffusion/diffraction phenomenon in multi-pulse-field-gradient experiments. J. Magn. Reson. 188, 285–294 (2007)

    Article  Google Scholar 

  44. Özarslan, E., Besser, P.J.: Microscopic anisotropy revealed by NMR double pulsed field gradient experiments with arbitrary timing parameters. J. Chem. Phys. 128, 154511 (2009)

    Article  Google Scholar 

  45. Özarslan, E., Shemesh, N., Basser, P.J.: A general framework to quantify the effect of restricted diffusion on the NMR signal with applications to double pulsed field gradient NMR experiments. J. Chem. Phys. 130, 104702 (2009)

    Article  Google Scholar 

  46. Shemesh, N., Cohen, Y.: Microscopic and compartment shape anisotropies in grey and white matter revealed by angular bipolar double-PFG. Magn. Reson. Med. 65, 1216–1227 (2011)

    Article  Google Scholar 

  47. Shemesh, N., Özarslan, E., Basser, P.J., Cohen, Y.: Detecting diffusion-diffraction patterns in size distribution phantoms using double-pulsed field gradient NMR: theory and experiments. J. Chem. Phys. 132, 034703 (2010)

    Article  Google Scholar 

  48. Shemesh, N., Özarslan, E., Adiri, T., Basser, P.J., Cohen, Y.: Noninvasive bipolar double-pulsed-field-gradient NMR reveals signatures for pore size and shape in polydisperse, randomly oriented, inhomogeneous porous media. J. Chem. Phys. 133, 044705 (2010)

    Article  Google Scholar 

  49. Shemesh, N., Özarslan, E., Basser, P.J., Cohen, Y.: Accurate noninvasive measurement of cell size and compartment shape anisotropy in yeast cells using double-pulsed field gradient MR. NMR Biomed. 25, 236–246 (2011)

    Article  Google Scholar 

  50. Shemesh, N., Westin, C.-F., Cohen, Y.: Magnetic resonance imaging by synergistic diffusion-diffraction patterns. Phys. Rev. Lett. 108, 058103 (2012)

    Article  Google Scholar 

  51. Shemesh, N., Barazany, D., Sadan, O., Bar, L., Zur, Y., Barhum, Y., Sochen, N., Offen, D., Assaf, Y., Cohen, Y.: Mapping apparent eccentricity and residual ensemble anisotropy in the gray matter using angular double-pulsed-field-gradient MRI. Magn. Reson. Med. 68, 795–806 (2012)

    Article  Google Scholar 

  52. Shemesh, N., Jespersen, S.N., Alexander, D.C., Cohen, Y., Drobnjak, I., Dyrby, T.B., Finsterbusch, J., Koch, M.A., Kuder, T., Laun, F., Lawrenz, M., Lundell, H., Mitra, P.P., Nilsson, M., Özarslan, E., Topgaard, D., Westin, C.F.: Conventions and nomenclature for double diffusion encoding (DDE) NMR and MRI. Magn. Reson. Med. 75, 82–87 (2016)

    Article  Google Scholar 

  53. Siow, B., Drobnjak, I., Chatterjee, A., Lythgoe, M.F., Alexander, D.C.: Estimation of pore size in a microstructure phantom using the optimised gradient waveform diffusion weighted NMR sequence. J. Magn. Reson. 214, 51–60 (2012)

    Article  Google Scholar 

  54. Siow, B., Drobnjak, I., Ianuş, A., Christie, I.N., Lythgoe, M.F., Alexander, D.C.: Axon radius estimation with oscillating gradient spin echo (OGSE) diffusion MRI. Diffus. Fundam. 18, 1–6 (2013)

    Google Scholar 

  55. Sjölund, J., Szczepankiewicz, F., Nilsson, M., Topgaard, D., Westin, C.F., Knutsson, H.: Constrained optimization of gradient waveforms for generalized diffusion encoding. J. Magn. Reson. 261, 157–68 (2015)

    Article  Google Scholar 

  56. Stejskal, E.O.: Use of spin echoes in a pulsed magnetic-field gradient to study anisotropic, restricted diffusion and flow. J. Chem. Phys. 43, 3597–3603 (1965)

    Article  Google Scholar 

  57. Stejskal, E.O., Tanner, T.E.: Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J. Chem. Phys. 42, 288–292 (1965)

    Article  Google Scholar 

  58. Szczepankiewicz, F., Lasič, S., van Westen, D., Sundgren, P.C., Englund, E., Westin, C.F., Ståhlberg, F., Lätt, J., Topgaard, D., Nilsson, M.: Quantification of microscopic diffusion anisotropy disentangles effects of orientation dispersion from microstructure: applications in healthy volunteers and in brain tumors. NeuroImage 104, 241–52 (2015)

    Article  Google Scholar 

  59. Szczepankiewicz, F., van Westen, D., Englund, E., Westin, C.F., Ståhlberg, F.: Lätt, J., Sundgren, P.C., Nilsson, M.: The link between diffusion MRI and tumor heterogeneity: mapping cell eccentricity and density by diffusional variance decomposition (DIVIDE). NeuroImage (2016). Early view

    Google Scholar 

  60. Topgaard, D., Söderman, O.: Self-diffusion in two- and three-dimensional powders of anisotropic domains: an NMR study of the diffusion of water in cellulose and starch. J. Phys. Chem. 106, 11887–11892 (2002)

    Article  Google Scholar 

  61. Westin, C.F., Szczepankiewicz, F., Pasternak, O., Özarslan, E., Topgaard, D., Knutsson, H., Nilsson, M.: Measurement tensors in diffusion MRI: generalizing the concept of diffusion encoding. In: Proceedings of MICCAI, Boston, pp. 209–216. Springer, Berlin (2014)

    Google Scholar 

  62. Westin, C.F., Knutsson, H., Pasternak, O., Szczepankiewicz, F., Özarslan, E., van Westen, D., Mattisson, C., Bogren, M., O’Donnell, L.J., Kubicki, M., Topgaard, D., Nilsson, M.: Q-space trajectory imaging for multidimensional diffusion MRI of the human brain. NeuroImage 135, 345–362 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by EPSRC grants M507970, G007748, H046410, K020439, and M020533 and the Leverhulme trust. Funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 657366 supports NS’s work on this topic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrada Ianuş .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ianuş, A., Shemesh, N., Alexander, D.C., Drobnjak, I. (2017). Measuring Microscopic Anisotropy with Diffusion Magnetic Resonance: From Material Science to Biomedical Imaging. In: Schultz, T., Özarslan, E., Hotz, I. (eds) Modeling, Analysis, and Visualization of Anisotropy. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-61358-1_10

Download citation

Publish with us

Policies and ethics