Advertisement

Long Noncoding RNA: Disclosing New Horizon in the Molecular World of Insects

  • Dhiraj Kumar
  • Xiaolong Hu
  • Rui Guo
  • Renyu Xue
  • Guangli Cao
  • Chengliang Gong
Chapter

Abstract

Long noncoding RNAs (lncRNAs) are the most versatile group of nonprotein-coding RNAs consisting of nucleotides of length more than 200 bp. Similar to mammal’s genome phenomenon, thousands of lncRNAs have been discovered in the insect’s genome through RNA sequencing technology and computational methods, which contributes to the diverse biological processes including diseases to regulate the gene expression, dosage compensation, and epigenetic imprinting of entire chromosome. In fruit fly, lncRNAs exposed noteworthy functions in the behavioral processes, sex, and neural development. However, in the silkworm, lncRNAs were linked with silk synthesis and affect the apoptosis; additionally, other baculoviral lncRNAs contributed to establishing the complex regulation of viral gene expression in baculovirus-infected BmN cells. In diamondback moth, lncRNA gene expression study revealed the insecticidal resistant activity, whereas caste differentiation and behavior mechanism in honeybee were also significantly investigated. Therefore, lncRNAs exist in various insect’s genomes, opening a new horizon for biotechnologist to identify, study, and disclose the gene expression, regulatory and biological functions of lncRNAs in insects.

Keywords

Insect’s genome Long noncoding RNAs RNA sequencing Biological function 

References

  1. Adams MD, Celniker SE, Holt RA et al (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195CrossRefPubMedGoogle Scholar
  2. Bernard D, Prasanth KV, Tripathi V, Colasse S, Nakamura T et al (2010) A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression. EMBO J 29:3082–3093CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bonasio R, Shiekhattar R (2004) Regulation of transcription by long noncoding RNAs. Annu Rev Genet 48:433–455CrossRefGoogle Scholar
  4. Bonasio R, Tu S, Reinberg D (2010) Molecular signals of epigenetic states. Science 330:612–616CrossRefPubMedPubMedCentralGoogle Scholar
  5. Brown JB, Boley N, Eisman R, May GE, Stoiber MH et al (2014) Diversity and dynamics of the Drosophila transcriptome. Nature 512:393–399CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chen Y, Dai H, Chen S, Zhang L, Long M (2011) Highly tissue specific expression of sphinx supports its male courtship related role in Drosophila melanogaster. PLoS One 6:e18853CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cheng T, Fu B, Wu Y, Long R, Liu C et al (2015) Transcriptome sequencing and positive selected genes analysis of Bombyx Mandarina. PLoS One 10:e0122837CrossRefPubMedPubMedCentralGoogle Scholar
  8. Deng X, Meller VH (2006) roX RNAs are required for increased expression of X-linked genes in Drosophila melanogaster males. Genetics 174:1859–1866CrossRefPubMedPubMedCentralGoogle Scholar
  9. Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S et al (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22:1775–1789CrossRefPubMedPubMedCentralGoogle Scholar
  10. Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T et al (2012) Landscape of transcription in human cells. Nature 488:101–108CrossRefGoogle Scholar
  11. Eddy SR (2001) Non-coding RNA genes and the modern RNA world. Nat Rev Genet 2:919–929CrossRefPubMedGoogle Scholar
  12. Etebari K, Michael J, Furlong S (2015) Intergenic non-coding RNAs in diamondback moth (Plutella xylostella) and their expression in insecticide resistant strains. Sci Rep 5:14642CrossRefPubMedPubMedCentralGoogle Scholar
  13. Fabrice L, Thomas D (2015) Identification of long non-coding RNAs in insects genomes. Curr Opin Insect Sci 7:1–8 (Elsevier: 4054001009011)Google Scholar
  14. Fang SM, Hu BL, Zhou QZ, Yu QY, Zhang Z (2015) Comparative analysis of the silk gland transcriptomes between the domestic and wild silkworms. BMC Genomics 16:60CrossRefPubMedPubMedCentralGoogle Scholar
  15. Fatica A, Bozzoni I (2013) Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet 15:7–21CrossRefPubMedGoogle Scholar
  16. Gardini A, Shiekhattar R (2014) The many faces of long noncoding RNAs. FEBS J 282(9):1647–1657. doi: 10.1111/febs.13101 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Gong L, Chen X, Liu C, Jin F, Hu Q (2014) Gene expression profile of Bombyx mori hemocyte under the stress of destruxin a. PLoS One 9:e96170CrossRefPubMedPubMedCentralGoogle Scholar
  18. Good MC, Zalatan JG, Lim WA (2011) Scaffold proteins: hubs for controlling the flow of cellular information. Science 332:680–686CrossRefPubMedPubMedCentralGoogle Scholar
  19. Guenther MG, Levine SS, Boyer LA, Jaenisch R, Young RA (2007) A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130:77–88CrossRefPubMedPubMedCentralGoogle Scholar
  20. Guo R, Guangli C, Yahong L, Renyu X, Dhiraj K et al (2016) Exogenous gene can be integrated into Nosema bombycis genome by mediating with a non-transposon vector. Parasitol Res 115:3093–3098CrossRefPubMedGoogle Scholar
  21. Guttman M, Amit I, Garber M, French C, Lin MF (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458:223–227CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hao Z, Fan C, Cheng T, Su Y, Wei Q (2015) Genome-wide identification, characterization and evolutionary analysis of long intergenic noncoding RNAs in cucumber. PLoS One 10:e0121800CrossRefPubMedPubMedCentralGoogle Scholar
  23. He Y, Vogelstein B, Velculescu VE, Papadopoulos N, Kinzler KW (2008) The antisense transcriptomes of human cells. Science 322:1855–1857CrossRefPubMedPubMedCentralGoogle Scholar
  24. Holt RA, Subramanian GM, Halpern A et al (2002) The genome sequence of the malaria mosquito Anopheles gambiae. Science 298:12–149CrossRefGoogle Scholar
  25. Humann FC, Hartfelder K (2011) Representational difference analysis (RDA) reveals differential expression of conserved as well as novel genes during caste-specific development of the honey bee (Apis mellifera L.) ovary. Insect Biochem Mol Biol 41:602–612CrossRefPubMedGoogle Scholar
  26. Ilott NE, Ponting CP (2013) Predicting long non-coding RNAs using RNA sequencing. Methods 63:50–59CrossRefPubMedGoogle Scholar
  27. Iyer MK, Niknafs YS, Malik R, Singhal U, Sahu A et al (2015) The landscape of long noncoding RNAs in the human transcriptome. Nat Genet 47:199–208CrossRefPubMedPubMedCentralGoogle Scholar
  28. Jacobson A, Baran I, Popovi C, Sorkine O (2011) Bounded biharmonic weights for real-time deformation. ACM Trans Graph 30:78:1–78:8Google Scholar
  29. Jayakodi M, Jung JW, Park D, Ahn YJ, Lee SC et al (2015) Genome-wide characterization of long intergenic non-coding RNAs (lincRNAs) provides new insight into viral diseases in honey bees Apis Cerana and Apis Mellifera. BMC Genomics 16:680CrossRefPubMedPubMedCentralGoogle Scholar
  30. Jenkins AM, Waterhouse RM, Muskavitch MA (2015) Long non-coding RNA discovery across the genus anopheles reveals conserved secondary structures within and beyond the Gambiae complex. BMC Genomics 16:337CrossRefPubMedPubMedCentralGoogle Scholar
  31. Jia L, Dayan Z, Zhonghuai X, Ningjia H (2015) Nonfunctional ingestion of plant miRNAs in silkworm revealed by digital droplet PCR and transcriptome analysis. Sci Rep 5:12290CrossRefPubMedPubMedCentralGoogle Scholar
  32. Johnsson P, Ackley A, Vidarsdottir L, Lui WO, Corcoran M et al (2013) A pseudogene long-noncoding-RNA network regulates PTEN transcription and translation in human cells. Nat Struct Mol Biol 20:440–446CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kapranov P, Laurent G (2012) Dark matter RNA: existence, function and controversy. Front Genet 3:60PubMedPubMedCentralGoogle Scholar
  34. Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R et al (2007) RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316:1484–1488CrossRefPubMedGoogle Scholar
  35. Kawaoka S, Kadota K, Arai Y, Suzuki Y, Fujii T et al (2011) The silkworm W chromosome is a source of female-enriched piRNAs. RNA 17:2144–2151CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kiuchi T, Koga H, Kawamoto M, Shoji K, Sakai H et al (2014) A single female-specific piRNA is the primary determiner of sex in the silkworm. Nature 509(7502):633–636CrossRefPubMedGoogle Scholar
  37. Kiya T, Kunieda T, Kubo T (2008a) Inducible- and constitutive-type transcript variants of kakusei, a novel non-coding immediate early gene, in the honeybee brain. Insect Mol Biol 17:531–536CrossRefPubMedGoogle Scholar
  38. Kiya T, Kunieda T, Kubo T (2008b) Inducible and constitutive-type transcript variants of kakusei, a novel noncoding immediate early gene, in the honeybee brain. Insect Mol Bio 17:531–536CrossRefGoogle Scholar
  39. Kiya T, Ugajin A, Kunieda T, Kubo T (2012) Identification of kakusei, a nuclear non-coding RNA. Molecular Sci 13:15496–15509CrossRefGoogle Scholar
  40. Kowalczyk MS, Higgs DR, Gingeras TR (2012) Molecular biology: RNA discrimination. Nature 482:310–311CrossRefPubMedGoogle Scholar
  41. Kutter C, Watt S, Stefflova K, Wilson MD, Goncalves A et al (2012) Rapid turnover of long noncoding RNAs and the evolution of gene expression. PLoS Genet 8:e1002841CrossRefPubMedPubMedCentralGoogle Scholar
  42. Lakhotia SC (2011) Forty years of the 93D puff of Drosophila melanogaster. J Biosci 36:399–423CrossRefPubMedGoogle Scholar
  43. Lakhotia SC, Mallik M, Singh AK, Ray M (2012) The large noncoding hsrv-n transcripts are essential for thermotolerance and remobilization of hnRNPs, HP1 and RNA polymerase II during recovery from heat shock in Drosophila. Chromosoma 121:49–70CrossRefPubMedGoogle Scholar
  44. Lee JT (2009) Lessons from X-chromosome inactivation: long ncRNA as guides and tethers to the epigenome. Genes Dev 23:1831–1842CrossRefPubMedPubMedCentralGoogle Scholar
  45. Legeai F, Derrien T (2015) Identification of long non-coding RNAs in insects genomes. Curr Opin Insect Sci 7:37–44CrossRefGoogle Scholar
  46. Li M, Wen S, Guo X, Bai B, Gong Z et al (2012) The novel long non-coding RNA CRG regulates Drosophila locomotor behavior. Nucleic Acids Res 40:11714–11727CrossRefPubMedPubMedCentralGoogle Scholar
  47. Li L, Eichten SR, Shimizu R, Petsch K, Yeh CT et al (2014) Genome-wide discovery and characterization of maize long non-coding RNAs. Genome Bio 5:40CrossRefGoogle Scholar
  48. Liao Q, Shen J, Liu J, Sun X, Zhao G et al (2014) Genome-wide identification and functional annotation of plasmodium falciparum long noncoding RNAs from RNA-seq data. Parasitol Res 113:1269–1281CrossRefPubMedGoogle Scholar
  49. Lim LP, Glasner ME, Yekta S et al (2003a) Vertebrate microRNA genes. Science 299:1540CrossRefPubMedGoogle Scholar
  50. Lim LP, Lau NC, Weinstein EG et al (2003b) The microRNAs of Caenorhabditis elegans. Genes Dev 17:991–1008CrossRefPubMedPubMedCentralGoogle Scholar
  51. Lipshitz HD, Peattie DA, Hogness DS (1987) Novel transcripts from the Ultrabithorax domain of the bithorax complex. Genes Dev 1:307–322CrossRefPubMedGoogle Scholar
  52. Liu J, Jung C, Xu J, Wang H, Deng S et al (2012) Genome-wide analysis uncovers regulation of long intergenic noncoding RNAs in Arabidopsis. Plant Cell 24:4333–4345CrossRefPubMedPubMedCentralGoogle Scholar
  53. Ma L, Ma Q, Li X, Cheng L, Li K (2014) Transcriptomic analysis of differentially expressed genes in the Ras1(CA)-overexpressed and wildtype posterior silk glands. BMC Genomics 15:182CrossRefPubMedPubMedCentralGoogle Scholar
  54. Magistri M, Faghihi MA, St Laurent G, Wahlestedt C (2012) Regulation of chromatin structure by long noncoding RNAs: focus on natural antisense transcripts. Trends Genet 28:389–396CrossRefPubMedPubMedCentralGoogle Scholar
  55. Mattick JS, Rinn JL (2015) Discovery and annotation of long noncoding RNAs. Nat Struct Mol Bio 22:5–7CrossRefGoogle Scholar
  56. Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genetics 10:155–159CrossRefPubMedGoogle Scholar
  57. Nam JW, Bartel DP (2012) Long noncoding RNAs in C. elegans. Genome Res 22:2529–2540CrossRefPubMedPubMedCentralGoogle Scholar
  58. Necsulea A, Soumillon M, Warnefors M, Liechti A, Daish T et al (2014) The evolution of lncRNA repertoires and expression patterns in tetrapods. Nature 505:635–640CrossRefPubMedGoogle Scholar
  59. Nie H, Liu C, Cheng T, Li Q, Wu Y et al (2014) Transcriptome analysis of integument differentially expressed genes in the pigment mutant (quail) during molting of silkworm, Bombyx mori. PLoS One 9:e94185CrossRefPubMedPubMedCentralGoogle Scholar
  60. Nishida KM, Iwasaki YW, Murota Y, Nagao A, Mannen T et al (2015) Respective functions of two distinct Siwi complexes assembled during PIWI-interacting RNA biogenesis in Bombyx germ cells. Cell Rep 10:193–203CrossRefPubMedGoogle Scholar
  61. Padron A, Molina-Cruz A, Quinones M, Ribeiro JM, Ramphul U et al (2014) In depth annotation of the Anopheles gambiae Mosquito midgut transcriptome. BMC Genomics 15:636CrossRefPubMedPubMedCentralGoogle Scholar
  62. Pan MH, Cai XJ, Liu M (2010) Establishment and characterization of an ovaria cell line of the silkworm, Bombyx mori. Tissue Cell 42:42–46CrossRefPubMedGoogle Scholar
  63. Pauli A, Valen E, Lin MF, Garber M, Vastenhouw NL et al (2012) Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis. Genome Res 22:577–591CrossRefPubMedPubMedCentralGoogle Scholar
  64. Pease B, Borges AC, Bender W (2013) Noncoding RNAs of the ultrabithorax domain of the Drosophila bithorax complex. Genetics 195:1253–1264CrossRefPubMedPubMedCentralGoogle Scholar
  65. Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 139:629–641CrossRefGoogle Scholar
  66. Sawata M, Daisuke Y, Takeuchi H, Kamikouchi A, Kazuaki O, Kubo T (2002) Identification and punctate nuclear localization of a novel noncoding identification and punctate nuclear localization of a novel noncoding RNA, Ks-1, from the honeybee brain. RNA 8(6):772–785CrossRefPubMedPubMedCentralGoogle Scholar
  67. Sawata M, Takeuchi H, Kubo T (2004) Identification and analysis of the minimal promoter activity of a novel noncoding nuclear RNA gene, AncR-1, from the honeybee (Apis mellifera L.) RNA 10(7):1047–1058. doi: 10.1261/rna.5231504.use CrossRefPubMedPubMedCentralGoogle Scholar
  68. Shao W, Zhao QY, Wang XY, Xu XY, Tang Q et al (2012) Alternative splicing and trans-splicing events revealed by analysis of the Bombyx mori transcriptome. RNA 18(7):1395–1407CrossRefPubMedPubMedCentralGoogle Scholar
  69. Shi X, Ming S, Hongbing L, Yanwen Y, Rong K (2015) A critical role for the long non-coding RNA GAS5 in proliferation and apoptosis in non-small-cell lung cancer. Mol Carcino 54(Suppl 1):E1–E12CrossRefGoogle Scholar
  70. Shoji K, Hara K, Kawamoto M, Kiuchi T, Kawaoka S et al (2014) Silkworm HP1a transcriptionally enhances highly expressed euchromatic genes via association with their transcription start sites. Nucleic Acids Res 42:11462–11471CrossRefPubMedPubMedCentralGoogle Scholar
  71. Smith ER, Allis CD, Lucchesi JC (2001) Linking global histone acetylation to the transcription enhancement of X-chromosomal genes in Drosophila males. J Biol Chem 276:31483–31486CrossRefPubMedGoogle Scholar
  72. Soshnev AA, Li X, Wehling MD, Geyer PK (2008) Context differences reveal insulator and activator functions of a Su(Hw) binding region. PLoS Genet 4:e1000159CrossRefPubMedPubMedCentralGoogle Scholar
  73. Soshnev AA, Ishimoto H, McAllister BF, Li X, Wehling MD (2011) A conserved long noncoding RNA affects sleep behavior in Drosophila. Genetics 189:455–468CrossRefPubMedPubMedCentralGoogle Scholar
  74. Spitale RC, Tsai MC, Chang HY (2011) RNA templating the epigenome: long noncoding RNAs as molecular scaffolds. Epigenetics 6:539–543CrossRefPubMedPubMedCentralGoogle Scholar
  75. Sun J, Lin Y, Wu J (2013) Long non-coding RNA expression profiling of mouse testis during postnatal development. PLoS One 8:e75750CrossRefPubMedPubMedCentralGoogle Scholar
  76. Tadano H, Yamazaki Y, Takeuchi H, Kubo T (2009) Age and division-of-labour-dependent differential expression of a novel non-coding RNA, Nb-1, in the brain of worker honeybees, Apis mellifera L. Insect Mol Biol 18:715–726CrossRefPubMedGoogle Scholar
  77. Taguchi S, Iwami M, Kiya T (2011) Identification and characterization of a novel nuclear noncoding RNA, Fben-1, which is preferentially expressed in the higher brain center of the female silkworm moth, Bombyx mori. Neurosci Lett 496:176–180CrossRefPubMedGoogle Scholar
  78. Tatsushi I, Masayuki M (2004) Role of Bcl-2 family members in invertebrates, Biochim. Biophys Acta 1644:73–81CrossRefGoogle Scholar
  79. Tran UM, Rajarajacholan U, Soh J, Kim T-S (2015) LincRNA-p21 acts as a mediator of ING1b-induced apoptosis. Cell Death Dis 6:e1668. doi: 10.1038/cddis CrossRefPubMedPubMedCentralGoogle Scholar
  80. Ulitsky I, Bartel DP (2013) LincRNAs: genomics, evolution, and mechanisms. Cell 154:26–46CrossRefPubMedPubMedCentralGoogle Scholar
  81. Wahlestedt C (2013) Targeting long non-coding RNA to therapeutically upregulate gene expression. Nat Rev Drug Dis 12:433–446CrossRefGoogle Scholar
  82. Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43:904–914CrossRefPubMedPubMedCentralGoogle Scholar
  83. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63CrossRefPubMedPubMedCentralGoogle Scholar
  84. Wang M, Yuan D, Tu L, Gao W, He Y et al (2015) Long noncoding RNAs and their proposed functions in fibre development of cotton (Gossypium spp.) New Phytol 207:1181–1197CrossRefPubMedGoogle Scholar
  85. Wu W, Zhang S, Li X, Xue M, Cao S et al (2013) Ets-2 regulates cell apoptosis via the Akt pathway, through the regulation of urothelial cancer associated 1, a long non-coding RNA, in bladder cancer cells. PLoS One 8:e73920CrossRefPubMedPubMedCentralGoogle Scholar
  86. Wu Y, Cheng T, Liu C, Liu D, Zhang Q et al (2016) Systematic identification and characterization of long non-coding RNAs in the silkworm, Bombyx mori. PLoS One 11:e0147147CrossRefPubMedPubMedCentralGoogle Scholar
  87. Xue J, Qiao N, Zhang W, Cheng RL, Zhang XQ et al (2012) Dynamic interactions between Bombyx mori nucleopolyhedrovirus and its host cells revealed by transcriptome analysis. J Virol 86:7345–7359CrossRefPubMedPubMedCentralGoogle Scholar
  88. Young RS, Marques AC, Tibbit C, Haerty W, Bassett AR et al (2012) Identification and properties of 1,119 candidate lincRNA loci in the Drosophila melanogaster genome. Genome Bio Evol 4:427–442CrossRefGoogle Scholar
  89. Zemach A, McDaniel IE, Silva P, Zilberman D (2010) Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 328:916–919CrossRefPubMedGoogle Scholar
  90. Zhang YC, Liao JY, Li ZY, Yu Y, Zhang JP et al (2014) Genome-wide screening and functional analysis identify a large number of long noncoding RNAs involved in the sexual reproduction of rice. Genome Bio 15:512CrossRefGoogle Scholar
  91. Zhou ZY, Li AM, Adeola AC, Liu YH, Irwin DM et al (2014) Genome-wide identification of long intergenic noncoding RNA genes and their potential association with domestication in pigs. Genome Biol Evol 6:1387–1392CrossRefPubMedPubMedCentralGoogle Scholar
  92. Zhou QZ, Bindan Z, Quan-You Y, Ze Z (2016) BmncRNAdb: a comprehensive database of non-coding RNAs in the silkworm, Bombyx mori. BMC Bioinformatics 17:370CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Molecular Biology LaboratorySchool of Biology and Basic Medical Science, Soochow UniversitySuzhouChina
  2. 2.College of Bee Science, Fujian Agriculture and Forestry UniversityFuzhouChina

Personalised recommendations