Advertisement

Nanoparticles as Precious Stones in the Crown of Modern Molecular Biology

  • M. Rajesh Kumar
  • P. Joice Sophia
Chapter

Abstract

The interdisciplinary field of research on biosystems at the nanoscale involving physical sciences, molecular engineering, biology, biotechnology, and medicine supplements the knowledge of synthesizing new drugs, targeted delivery, regenerative medicine, and neuromorphic engineering forms the booming research in the present society. The present chapter deals with the role of nanoparticles in modern molecular biology. This is an interesting area of research that creates great impact on the healthcare of the society. The prime focus is to give the reader a historic background of nanomaterial application in biology and medicine. We have also provided the overview of most recent developments in this field leading to discussion of hard road to commercialization.

Keywords

Nanoparticles Molecular biology Drug delivery Bio-labels Tissue engineering 

References

  1. Alivisatos P (2004) The use of nanocrystals in biological detection. Nat Biotechnol 22(1):47–52PubMedCrossRefGoogle Scholar
  2. Allen TM, Cullis PR (2004) Drug delivery systems: entering the mainstream. Science 303(5665):1818–1822PubMedCrossRefGoogle Scholar
  3. Andrew AM (2000) Nanomedicine, volume 1: basic capabilities, by Robert A. Freitas Jr., Landes Bioscience, Austin, Texas, 1999, xxi+ 509 pp., ISBN 1-57059-645-X Index (Hardback, $89.000), Cambridge University Press.  doi: 10.1017/S0263574700232827
  4. Atkinson MA et al (1994) Cellular immunity to a determinant common to glutamate decarboxylase and coxsackie virus in insulin-dependent diabetes. J Clin Investig 94(5):2125PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bachmaier K et al (1999) Chlamydia infections and heart disease linked through antigenic mimicry. Science 283(5406):1335–1339PubMedCrossRefGoogle Scholar
  6. Balin BJ et al (1998) Identification and localization of Chlamydia pneumoniae in the Alzheimer's brain. Med Microbiol Immunol 187(1):23–42PubMedCrossRefGoogle Scholar
  7. Bennett-Woods D (2006) Nanotechnology in medicine: implications of converging technologies on humanity. Development 49(4):54–59CrossRefGoogle Scholar
  8. Bernardi M et al (2009) Development of metal oxide nanoparticles by soft chemical method. Ceram Int 35(1):463–466CrossRefGoogle Scholar
  9. Bhargava V et al (2013) Quantitative transcriptomics using designed primer-based amplification. Sci Rep 3:1740PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bhushan B (2009) Biomimetics: lessons from nature–an overview. Philos Trans R Soc Lond A Math Phys Eng Sci 367(1893):1445–1486CrossRefGoogle Scholar
  11. Bhushan B, Jung YC (2011) Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog Mater Sci 56(1):1–108CrossRefGoogle Scholar
  12. Blaser MJ, Chyou P, Nomura A (1995) Age at establishment of Helicobacter pylori infection and gastric carcinoma, gastric ulcer, and duodenal ulcer risk. Cancer Res 55(3):562–565PubMedGoogle Scholar
  13. Bogunia-Kubik K, Sugisaka M (2002) From molecular biology to nanotechnology and nanomedicine. Biosystems 65(2):123–138PubMedCrossRefGoogle Scholar
  14. Bosch FX et al (1995) Prevalence of human papillomavirus in cervical cancer: a worldwide perspective. J Natl Cancer Inst 87(11):796–802PubMedCrossRefGoogle Scholar
  15. Bruchez M et al (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281(5385):2013–2016PubMedCrossRefGoogle Scholar
  16. Burgos JS (2005) Involvement of the Epstein-Barr virus in the nasopharyngeal carcinoma pathogenesis. Med Oncol 22(2):113–121PubMedCrossRefGoogle Scholar
  17. Burns MA et al (1996) Microfabricated structures for integrated DNA analysis. Proc Natl Acad Sci 93(11):5556–5561PubMedPubMedCentralCrossRefGoogle Scholar
  18. Cao G (2004) Synthesis, properties and applications. World Scientific, SingaporeGoogle Scholar
  19. Chakrabarti A, Shu L (2010) Biologically inspired design. Artif Intel Eng Des Anal Manuf 24(04):453–454CrossRefGoogle Scholar
  20. Chan EY (2005) Advances in sequencing technology. Mutat Res Fundam Mol Mech Mutagen 573(1):13–40CrossRefGoogle Scholar
  21. Chan WC, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281(5385):2016–2018PubMedCrossRefGoogle Scholar
  22. Chen G et al (2016) Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chem Rev 116(5):2826–2885PubMedCrossRefGoogle Scholar
  23. Chesebro B (1998) BSE and prions: uncertainties about the agent. Science 279(5347):42–43PubMedCrossRefGoogle Scholar
  24. Çiftçioglu N et al (1999) Nanobacteria: an infectious cause for kidney stone formation. Kidney Int 56(5):1893–1898PubMedCrossRefGoogle Scholar
  25. Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21(10):1166–1170PubMedCrossRefGoogle Scholar
  26. Crick F (1970) Central dogma of molecular biology. Nature 227(5258):561–563PubMedCrossRefGoogle Scholar
  27. Danesh J, Collins R, Peto R (1997) Chronic infections and coronary heart disease: is there a link? Lancet 350(9075):430–436PubMedCrossRefGoogle Scholar
  28. De La Isla A et al (2003) Nanohybrid scratch resistant coatings for teeth and bone viscoelasticity manifested in tribology. Mater Res Innov 7(2):110–114CrossRefGoogle Scholar
  29. deWaard JR et al (2008) Assembling DNA barcodes. In: Environmental genomics. Humana, New York, pp 275–294CrossRefGoogle Scholar
  30. Diamanti MV, Pedeferri M (2015) Bioinspired self-cleaning materials. In: Biotechnologies and biomimetics for civil engineering. Springer, Cham, pp 211–234Google Scholar
  31. DiMaio D, Liao JB (2006) Human papillomaviruses and cervical cancer. Adv Virus Res 66:125–159PubMedCrossRefGoogle Scholar
  32. Disci-Zayed D (2016) Green synthesis of nanoparticles. Christian-Albrechts Universität Kiel, KielGoogle Scholar
  33. Dreher KL (2004) Health and environmental impact of nanotechnology: toxicological assessment of manufactured nanoparticles. Toxicol Sci 77(1):3–5PubMedCrossRefGoogle Scholar
  34. Edelstein R et al (2000) The BARC biosensor applied to the detection of biological warfare agents. Biosens Bioelectron 14(10):805–813PubMedCrossRefGoogle Scholar
  35. Elsaesser A, Howard CV (2012) Toxicology of nanoparticles. Adv Drug Deliv Rev 64(2):129–137PubMedCrossRefGoogle Scholar
  36. Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5(3):161–171PubMedCrossRefGoogle Scholar
  37. Fohlman J, Friman G (1993) Is juvenile diabetes a viral disease? Ann Med 25(6):569–574PubMedGoogle Scholar
  38. Franzen S, Lommel SA (2009) Targeting cancer with ‘smart bombs’: equipping plant virus nanoparticles for a ‘seek and destroy’ mission. Nanomedicine 4(5):575–588PubMedCrossRefGoogle Scholar
  39. Freitas RA (2002) The future of nanofabrication and molecular scale devices in nanomedicine. In: Studies in health technology and informatics. IOS, Amsterdam, pp 45–60Google Scholar
  40. Freitas RA (2005) Current status of nanomedicine and medical nanorobotics. J Comput Theor Nanosci 2(1):1–25Google Scholar
  41. Freitasjr R (2005) What is nanomedicine? Nanomed nanotechnol Biol Med 1:2CrossRefGoogle Scholar
  42. Gillies G et al (2002) A spinal cord surrogate with nanoscale porosity for in vitro simulations of restorative neurosurgical techniques. Nanotechnology 13(5):587CrossRefGoogle Scholar
  43. Hammond CJ et al (2010) Immunohistological detection of Chlamydia pneumoniae in the Alzheimer's disease brain. BMC Neurosci 11(1):1CrossRefGoogle Scholar
  44. Hanusch K-U et al (2013) Whole-body hyperthermia for the treatment of major depression: associations with thermoregulatory cooling. Am J Psychiatr 170(7):802–804PubMedCrossRefGoogle Scholar
  45. Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114:165–172PubMedCrossRefGoogle Scholar
  46. He X-S, Shi W-Y (2009) Oral microbiology: past, present and future. Int J Oral Sci 1(2):47PubMedPubMedCentralCrossRefGoogle Scholar
  47. Hebert PD, Cywinska A, Ball SL (2003) Biological identifications through DNA barcodes. Proc R Soc Lond B Biol Sci 270(1512):313–321CrossRefGoogle Scholar
  48. Horwitz MS et al (1998) Diabetes induced by Coxsackie virus: initiation by bystander damage and not molecular mimicry. Nat Med 4(7):781–785PubMedCrossRefGoogle Scholar
  49. Huang X et al (2007) Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine 2(5):681–693PubMedCrossRefGoogle Scholar
  50. Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13(10):2638–2650CrossRefGoogle Scholar
  51. Itzhaki R et al (2004) Infiltration of the brain by pathogens causes Alzheimer’s disease. Neurobiol Aging 25(5):619–627PubMedCrossRefGoogle Scholar
  52. Ivanić K-Z, Tadić Z, Omazić MA (2015) Biomimicry – an overview. Holistic Approach Environ 5(1):19–36Google Scholar
  53. Jain RK, Stylianopoulos T (2010) Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol 7(11):653–664PubMedPubMedCentralCrossRefGoogle Scholar
  54. Janka J, Maldarelli F (2004) Prion diseases: Update on mad cow disease, variant creutzfeldt-jakob disease, and the transmissible spongiform encephalopathies. Curr Infect Dis Rep 6(4):305–315PubMedCrossRefGoogle Scholar
  55. Jarrett RF (2006) Viruses and lymphoma/leukaemia. J Pathol 208(2):176–186PubMedCrossRefGoogle Scholar
  56. Jia G et al (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39(5):1378–1383PubMedCrossRefGoogle Scholar
  57. Jiang S et al (2009) NIR-to-visible upconversion nanoparticles for fluorescent labeling and targeted delivery of siRNA. Nanotechnology 20(15):155101PubMedCrossRefGoogle Scholar
  58. Jung D et al (2013) Chemical biology-based approaches on fluorescent labeling of proteins in live cells. Mol BioSyst 9(5):862–872PubMedCrossRefGoogle Scholar
  59. Kah JCY et al (2007) Early diagnosis of oral cancer based on the surface plasmon resonance of gold nanoparticles. Int J Nanomedicine 2(4):785PubMedPubMedCentralGoogle Scholar
  60. Kahn JS (2006) The widening scope of coronaviruses. Curr Opin Pediatr 18(1):42–47PubMedGoogle Scholar
  61. Kajander EO, Ciftcioglu N (1998) Nanobacteria: an alternative mechanism for pathogenic intra-and extracellular calcification and stone formation. Proc Natl Acad Sci 95(14):8274–8279PubMedPubMedCentralCrossRefGoogle Scholar
  62. Kelsall RW, Hamley IW, Geoghegan M (2005) Nanoscale science and technology. Wiley Online Library, New YorkCrossRefGoogle Scholar
  63. Kneuer C et al (2000) A nonviral DNA delivery system based on surface modified silica-nanoparticles can efficiently transfect cells in vitro. Bioconjug Chem 11(6):926–932PubMedCrossRefGoogle Scholar
  64. Kol A, Santini M (2004) Infectious agents and atherosclerosis: current perspectives and unsolved issues. Ital Heart J 5(5):350–357PubMedGoogle Scholar
  65. Kostarelos K (2006) The emergence of nanomedicine: a field in the making. Nanomedicine 1(1):1–3PubMedCrossRefGoogle Scholar
  66. Kramer G, Klingler HC, Steiner GE (2000) Role of bacteria in the development of kidney stones. Curr Opin Urol 10(1):35–38PubMedCrossRefGoogle Scholar
  67. Kusters JG, van Vliet AH, Kuipers EJ (2006) Pathogenesis of Helicobacter pylori infection. Clin Microbiol Rev 19(3):449–490PubMedPubMedCentralCrossRefGoogle Scholar
  68. Legname G et al (2004) Synthetic mammalian prions. Science 305(5684):673–676PubMedCrossRefGoogle Scholar
  69. Li M et al (2010) Physiologically based pharmacokinetic modeling of nanoparticles. ACS Nano 4(11):6303–6317PubMedCrossRefGoogle Scholar
  70. Lipinski C, Hopkins A (2004) Navigating chemical space for biology and medicine. Nature 432(7019):855–861PubMedCrossRefGoogle Scholar
  71. Lo YD et al (1999) Quantitative analysis of cell-free Epstein-Barr virus DNA in plasma of patients with nasopharyngeal carcinoma. Cancer Res 59(6):1188–1191PubMedGoogle Scholar
  72. Lodish H et al (1995) Molecular cell biology, vol 3. Scientific American, New YorkGoogle Scholar
  73. Lynch N et al (2006) PANDAS (paediatric autoimmune neuropsychiatric disorder associated with streptococcal infection). Ir Med J 99(5):155–155PubMedGoogle Scholar
  74. Ma J et al (2003) Biomimetic processing of nanocrystallite bioactive apatite coating on titanium. Nanotechnology 14(6):619CrossRefGoogle Scholar
  75. Mah C et al (2000) Microsphere-mediated delivery of recombinant AAV vectors in vitro and in vivo. Mol Ther 1:S239CrossRefGoogle Scholar
  76. Majoros IJ et al (2008) Current dendrimer applications in cancer diagnosis and therapy. Curr Top Med Chem 8(14):1165–1179PubMedCrossRefGoogle Scholar
  77. Marra MA et al (2003) The genome sequence of the SARS-associated coronavirus. Science 300(5624):1399–1404PubMedCrossRefGoogle Scholar
  78. McIntire LV (2002) World technology panel report on tissue engineering. Ann Biomed Eng 30(10):1216–1220PubMedCrossRefGoogle Scholar
  79. Mell LK, Davis RL, Owens D (2005) Association between streptococcal infection and obsessive-compulsive disorder, Tourette's syndrome, and tic disorder. Pediatrics 116(1):56–60PubMedCrossRefGoogle Scholar
  80. Mendonça G et al (2008) Advancing dental implant surface technology–from micron-to nanotopography. Biomaterials 29(28):3822–3835PubMedCrossRefGoogle Scholar
  81. Mercanzini A et al (2010) Controlled release nanoparticle-embedded coatings reduce the tissue reaction to neuroprostheses. J Control Release 145(3):196–202PubMedCrossRefGoogle Scholar
  82. Meyer SC (2003) DNA and the origin of life: information, specification, and explanation. Design and Public Education, Darwinism, pp 223–285Google Scholar
  83. Miranda HC et al (2006) Detection of Borna disease virus p24 RNA in peripheral blood cells from Brazilian mood and psychotic disorder patients. J Affect Disord 90(1):43–47PubMedCrossRefGoogle Scholar
  84. Molday RS, Mackenzie D (1982) Immunospecific ferromagnetic iron-dextran reagents for the labeling and magnetic separation of cells. J Immunol Methods 52(3):353–367PubMedCrossRefGoogle Scholar
  85. Morange M, Cobb M (2000) A history of molecular biology. Harvard University Press, Cambridge, MAGoogle Scholar
  86. Muñoz N et al (2003) Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med 348(6):518–527PubMedCrossRefGoogle Scholar
  87. Nakamura K et al (2011) Sequence-specific error profile of Illumina sequencers. Nucleic Acids Res 39(13):gkr344CrossRefGoogle Scholar
  88. Nam J-M, Thaxton CS, Mirkin CA (2003) Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301(5641):1884–1886PubMedCrossRefGoogle Scholar
  89. Nel A et al (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627PubMedCrossRefGoogle Scholar
  90. Nie S (2010) Understanding and overcoming major barriers in cancer nanomedicine. Nanomedicine 5(4):523–528PubMedPubMedCentralCrossRefGoogle Scholar
  91. Nisole S, Stoye JP, Saïb A (2005) TRIM family proteins: retroviral restriction and antiviral defence. Nat Rev Microbiol 3(10):799–808PubMedCrossRefGoogle Scholar
  92. Nunes SOV et al (2008) RNA from Borna disease virus in patients with schizophrenia, schizoaffective patients, and in their biological relatives. J Clin Lab Anal 22(4):314–320PubMedCrossRefGoogle Scholar
  93. Ow H et al (2005) Bright and stable core-shell fluorescent silica nanoparticles. Nano Lett 5(1):113–117PubMedCrossRefGoogle Scholar
  94. Palenik GJ, Jensen WP, Suh I-H (2003) The history of molecular structure determination viewed through the Nobel prizes. J Chem Educ 80(7):753CrossRefGoogle Scholar
  95. Pandey A et al (2008) Nanoscience and their biological importance: human health and disease. Dig J Nanomater Biostruct 3(3):141–146Google Scholar
  96. Panessa-Warren B et al (2006) Biological cellular response to carbon nanoparticle toxicity. J Phys Condens Matter 18(33):S2185CrossRefGoogle Scholar
  97. Pantarotto D et al (2003) Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody responses. Chem Biol 10(10):961–966PubMedCrossRefGoogle Scholar
  98. Parak WJ et al (2002) Cell motility and metastatic potential studies based on quantum dot imaging of phagokinetic tracks. Adv Mater 14(12):882–885CrossRefGoogle Scholar
  99. Patel P et al (1995) Association of Helicobacter pylori and Chlamydia pneumoniae infections with coronary heart disease and cardiovascular risk factors. BMJ 311(7007):711–714PubMedPubMedCentralCrossRefGoogle Scholar
  100. Peer D et al (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2(12):751–760PubMedCrossRefGoogle Scholar
  101. Peiris J et al (2003) Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361(9366):1319–1325PubMedCrossRefGoogle Scholar
  102. Pereira P, Monteiro G, Prazeres D (2015) General aspects of biomimetic materials. In: Biotechnologies and biomimetics for civil engineering. Springer, Cham, pp 57–79Google Scholar
  103. Perry AS et al (2013) Insecticides in agriculture and environment: retrospects and prospects. Springer Science & Business Media, BerlinGoogle Scholar
  104. Prabhu S, Poulose EK (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2(1):1–10CrossRefGoogle Scholar
  105. PROKOP A (2001) Bioartificial organs in the twenty-first century. Ann N Y Acad Sci 944(1):472–490PubMedCrossRefGoogle Scholar
  106. Quinn S, Gaughran W (2010) Bionics – an inspiration for intelligent manufacturing and engineering. Robot Comput Integr Manuf 26(6):616–621CrossRefGoogle Scholar
  107. Ravindran MS et al (2016) Opportunistic intruders: how viruses orchestrate ER functions to infect cells. Nat Rev Microbiol 14(7):407PubMedPubMedCentralCrossRefGoogle Scholar
  108. Riehemann K et al (2009) Nanomedicine – challenge and perspectives. Angew Chem Int Ed 48(5):872–897CrossRefGoogle Scholar
  109. Rizzello L et al (2011) Impact of nanoscale topography on genomics and proteomics of adherent bacteria. ACS Nano 5(3):1865–1876PubMedCrossRefGoogle Scholar
  110. Roco MC (2003) Nanotechnology: convergence with modern biology and medicine. Curr Opin Biotechnol 14(3):337–346PubMedCrossRefGoogle Scholar
  111. Rota PA et al (2003) Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300(5624):1394–1399PubMedCrossRefGoogle Scholar
  112. Roy I et al (2005) Optical tracking of organically modified silica nanoparticles as DNA carriers: a nonviral, nanomedicine approach for gene delivery. Proc Natl Acad Sci U S A 102(2):279–284PubMedPubMedCentralCrossRefGoogle Scholar
  113. Sahoo H (2012) Fluorescent labeling techniques in biomolecules: a flashback. RSC Adv 2(18):7017–7029CrossRefGoogle Scholar
  114. Salata OV (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnol 2(1):1CrossRefGoogle Scholar
  115. Sarikaya M et al (2003) Molecular biomimetics: nanotechnology through biology. Nat Mater 2(9):577–585PubMedCrossRefGoogle Scholar
  116. Sawicki MP et al (1993) Human genome project. Am J Surg 165(2):258–264PubMedCrossRefGoogle Scholar
  117. Schadt EE, Turner S, Kasarskis A (2010) A window into third-generation sequencing. Hum Mol Genet 19(R2):R227–R240PubMedCrossRefGoogle Scholar
  118. Scott J, Thompson G (2011) The discovery of the structure of DNA. In: Nobel prizes that changed medicine. Imperical College Press, London, p 89CrossRefGoogle Scholar
  119. Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26(10):1135–1145PubMedCrossRefGoogle Scholar
  120. Shinkai M et al (1999) Intracellular hyperthermia for cancer using magnetite cationic liposomes. J Magn Magn Mater 194(1):176–184CrossRefGoogle Scholar
  121. Slowing II et al (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 60(11):1278–1288PubMedCrossRefGoogle Scholar
  122. Smith AM et al (2006) Multicolor quantum dots for molecular diagnostics of cancer. Expert Rev Mol Diagn 6(2):231–244PubMedCrossRefGoogle Scholar
  123. Swedo SE et al (1998) Pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections: clinical description of the first 50 cases. American Journal of Psychiatry 155(2):264–271PubMedGoogle Scholar
  124. Swihart MT (2003) Vapor-phase synthesis of nanoparticles. Curr Opin Colloid Interface Sci 8(1):127–133CrossRefGoogle Scholar
  125. Taton TA, Mirkin CA, Letsinger RL (2000) Scanometric DNA array detection with nanoparticle probes. Science 289(5485):1757–1760PubMedCrossRefGoogle Scholar
  126. Tokárová V et al (2013) Development of spray-dried chitosan microcarriers for nanoparticle delivery. Powder Technol 235:797–805CrossRefGoogle Scholar
  127. Tomb J-F et al (1997) The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388(6642):539–547PubMedCrossRefGoogle Scholar
  128. Variola F et al (2009) Improving biocompatibility of implantable metals by nanoscale modification of surfaces: an overview of strategies, fabrication methods, and challenges. Small 5(9):996–1006PubMedCrossRefGoogle Scholar
  129. Venter JC et al (2001) The sequence of the human genome. Science 291(5507):1304–1351PubMedCrossRefGoogle Scholar
  130. Vierra S (2011) Biomimicry: designing to model nature. WBDG. https://www.wbdg.org/resources/biomimicry-designing-model-nature
  131. Vinogradov S, Wei X (2012) Cancer stem cells and drug resistance: the potential of nanomedicine. Nanomedicine 7(4):597–615PubMedPubMedCentralCrossRefGoogle Scholar
  132. Visintin I et al (2008) Diagnostic markers for early detection of ovarian cancer. Clin Cancer Res 14(4):1065–1072PubMedCrossRefGoogle Scholar
  133. Wagner V et al (2006) The emerging nanomedicine landscape. Nat Biotechnol 24(10):1211–1217PubMedCrossRefGoogle Scholar
  134. Walther W, Stein U (2000) Viral vectors for gene transfer. Drugs 60(2):249–271PubMedCrossRefGoogle Scholar
  135. Wang S et al (2002) Antigen/antibody immunocomplex from CdTe nanoparticle bioconjugates. Nano Lett 2(8):817–822CrossRefGoogle Scholar
  136. Wang L et al (2012) Nano-hydroxyapatite particles induce apoptosis on MC3T3-E1 cells and tissue cells in SD rats. Nanoscale 4(9):2894–2899PubMedCrossRefGoogle Scholar
  137. Weil TT, Parton RM, Davis I (2010) Making the message clear: visualizing mRNA localization. Trends Cell Biol 20(7):380–390PubMedPubMedCentralCrossRefGoogle Scholar
  138. Weiler C, Goel AK (2015) From mitochondria to water harvesting: a case study in biologically inspired design. IEEE Potentials 34(2):38–43CrossRefGoogle Scholar
  139. Weissleder R et al (1990) Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology 175(2):489–493PubMedCrossRefGoogle Scholar
  140. Wies van Roosmalen et al (2015) Tumor cell migration screen identifies SRPK1 as breast cancer metastasis determinant. J Clin Invest 125(4):1648–1664.Google Scholar
  141. Wolinsky JB, Grinstaff MW (2008) Therapeutic and diagnostic applications of dendrimers for cancer treatment. Adv Drug Deliv Rev 60(9):1037–1055PubMedCrossRefGoogle Scholar
  142. Yan H et al (2003) DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301(5641):1882–1884PubMedCrossRefGoogle Scholar
  143. Zheng CR et al (2016) Particulate respirators functionalized with silver nanoparticles showed excellent real-time antimicrobial effects against pathogens. Environ Sci Technol 50(13):7144–7151PubMedCrossRefGoogle Scholar
  144. Zhou H, Lee J (2011) Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater 7(7):2769–2781PubMedCrossRefGoogle Scholar
  145. Zhu S et al (2002) A novel nonviral nanoparticle gene vector: Poly-L-lysine-silica nanoparticles. Chin Sci Bull 47(8):654–658CrossRefGoogle Scholar
  146. Zur Hausen H et al (1970) Epstein-Barr virus in Burkitt's lymphoma and nasopharyngeal carcinoma.[ii] EBV DNA in biopsies of Burkitt tumours and anaplastic carcinomas of the nasopharynx. Nature 228:1056–1058PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Chemistry, Chemical Engineering and Material ScienceSoochow UniversitySuzhouChina
  2. 2.Department of Nanoscience and TechnologyBharathiar UniversityCoimbatoreIndia

Personalised recommendations