Skip to main content

Research Advancement of Insect Origin Fungus Cordyceps

  • Chapter
  • First Online:
Trends in Insect Molecular Biology and Biotechnology
  • 1359 Accesses

Abstract

Chinese caterpillar fungus, Cordyceps sinensis, is a traditional Chinese medicine that parasitize Hepialidae larvae and grows on mountain at an altitude of 3000 m high. After infection, the larvae become rigid, latent feel the humidity in the Cordyceps topsoil depth of 10 cm, which is formed by a stiff end pumping out insects long rod-like stroma (i.e., Cordyceps sinensis fruiting and sclerotium of dead insects (larvae corpse) to form a composite) when the spring comes and snow melt. It is mainly produced in Qinghai, Tibet, Sichuan, Yunnan, Gansu, Guizhou, and other provinces and autonomous regions of the alpine zone and snow-capped mountains and plains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Further reading

  • Ahn YJ, Park SJ, Lee SG et al (2000) Cordycepin: selective growth inhibitor derived from liquid culture of Cordyceps militaris against Clostridium spp. J Agric Food Chem 48(7):2744–2748

    Article  CAS  PubMed  Google Scholar 

  • Cannon PF, Kirk PM (2007) Fungal families of the world. CabinetMaker:456

    Google Scholar 

  • Chang Y, Hsu WH, Lu WJ et al (2015) Inhibitory mechanisms of CME-1, a novel polysaccharide from the mycelia of Cordyceps sinensis, in platelet activation. Curr Pharm Biotechnol 16(5):451–461

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Wang W, Yang Y et al (1997) Genetic divergence of Cordyceps sinensis as estimated by random amplified polymorphic DNA analysis. Acta Genet Sin 24(5):410–416

    CAS  PubMed  Google Scholar 

  • Chen Y-C, Huang Y-L, Huang B-M (2005) Cordyceps sinensis mycelium activates PKA and PKC signal pathways to stimulate steroidogenesis in MA-10 mouse Leydig tumor cells. Int J Biochem Cell Biol 37(1):214–223

    Article  CAS  PubMed  Google Scholar 

  • Cho HJ, Cho JY, Rhee MH et al (2007) Inhibitory effects of cordycepin (3´-deoxyadenosine), a component of Cordyceps militaris, on human platelet aggregation induced by thapsigargin. J Microbiol Biotechnol 17(7):1134–1138

    Google Scholar 

  • Choi HN, Jang YH, Kim MJ et al (2014) Cordyceps militaris alleviates non-alcoholic fatty liver disease in mice. Nutr Res Pract 8(2):172–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das SK, Masuda M, Hatashita M et al (2008) A new approach for improving cordycepin productivity in surface liquid culture of Cordyceps militaris using high-energy ion beam irradiation. Lett Appl Microbiol 47(6):534–538

    Article  CAS  PubMed  Google Scholar 

  • Hong T, Cui LK, Wen J et al (2015) Cordycepin protects podocytes from injury mediated by complements complex C5b-9. Sichuan Da Xue Xue Bao Yi Xue Ban 46(2):173–178. 227

    CAS  PubMed  Google Scholar 

  • Hur H (2008) Chemical Ingredients of Cordyceps militaris. Mycobiology 36(4):233–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jagger DV, Kredich NM, Guarino AJ (1961) Inhibition of Ehrlich mouse ascites tumor growth by cordycepin. Cancer Res 21(2):216–220

    CAS  PubMed  Google Scholar 

  • Jeong MH, Lee CM, Lee SW et al (2013) Cordycepin-enriched Cordyceps militaris induces immunomodulation and tumor growth delay in mouse-derived breast cancer. Oncol Rep 30(4):1996–2002

    Article  CAS  PubMed  Google Scholar 

  • Jing Y, Cui X, Chen Z et al (2014) Elucidation and biological activities of a new polysaccharide from cultured Cordyceps militaris. Carbohydr Polym 102:288–296

    Article  CAS  PubMed  Google Scholar 

  • Jing Y, Zhu J, Liu T et al (2015) Structural characterization and biological activities of a novel polysaccharide from cultured Cordyceps militaris and its sulfated derivative. J Agric Food Chem 63(13):3464–3471

    Article  CAS  PubMed  Google Scholar 

  • Jong-Ho KOH, Kwang-Won YU, Hyung-Joo SUH, Yang-Moon CHOI, Tae-Seok AHN (2002) Activationofmacrophages and the intestinal immune system by an orally administered decoction fromcultured mycelia of Cordyceps sinensis. Biosci Biotechnol Biochem 66:407–411

    Article  Google Scholar 

  • Koh J-H, Kim K-M, Kim J-M et al (2003) Antifatigue and antistress effect of the hot-water fraction from mycelia of Cordyceps sinensis. Biol Pharm Bull 26(5):691–694

    Article  CAS  PubMed  Google Scholar 

  • Kuo HC, Su YL, Yang HL et al (2005) Identification of Chinese medicinal fungus Cordyceps sinensis by PCR-single-stranded conformation polymorphism and phylogenetic relationship. J Agric Food Chem 53(10):3963–3968

    Article  CAS  PubMed  Google Scholar 

  • Lee DH, Kim HH, Lim DH et al (2015a) Effect of Cordycepin-Enriched WIB801C from Cordyceps militaris Suppressing Fibrinogen Binding to Glycoprotein IIb/IIIa. Biomol Ther 23(1):60–70

    Article  Google Scholar 

  • Lee H, Kim YJ, Kim HW et al (2006) Induction of apoptosis by Cordyceps militaris through activation of caspase-3 in leukemia HL-60 cells. Biol Pharm Bull 29(4):670–674

    Article  CAS  PubMed  Google Scholar 

  • Lee JS, Kwon DS, Lee KR et al (2015b) Mechanism of macrophage activation induced by polysaccharide from Cordyceps militaris culture broth. Carbohydr Polym 120:29–37

    Article  CAS  PubMed  Google Scholar 

  • Liang HH, Cheng Z, Yang XL et al (2008) Genetic diversity and structure of Cordyceps sinensis populations from extensive geographical regions in China as revealed by inter-simple sequence repeat markers. J Microbiol 46(5):549–556

    Article  CAS  PubMed  Google Scholar 

  • Liao Y, Ling J, Zhang G et al (2015) Cordycepin induces cell cycle arrest and apoptosis by inducing DNA damage and up-regulation of p53 in Leukemia cells. Cell Cycle 14(5):761–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Q, Mei W, Luo S et al (2015) Apoptosis of Bel-7402 human hepatoma cells induced by a ruthenium(II) complex coordinated by cordycepin through the p53 pathway. Mol Med Rep 11(6):4424–4430

    Article  CAS  PubMed  Google Scholar 

  • Mao XB, Zhong JJ (2004) Hyperproduction of cordycepin by two-stage dissolved oxygen control in submerged cultivation of medicinal mushroom Cordyceps militaris in bioreactors. Biotechnol Prog 20(5):1408–1413

    Article  CAS  PubMed  Google Scholar 

  • Pan BS, Wang YK, Lai MS et al (2015) Cordycepin induced MA-10 mouse Leydig tumor cell apoptosis by regulating p38 MAPKs and PI3K/AKT signaling pathways. Sci Rep 5:13372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stensrud Q, Schumacher T, Shalchian-Tabrizi K et al (2007) Accelerated nrDNA evolution and profound AT bias in the medicinal fungus Cordyceps sinensis. Mycol Res 111(4):409–415

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Xu N, Zhang J et al (2015a) Antihyperlipidemic and hepatoprotective activities of residue polysaccharide from Cordyceps militaris SU-12. Carbohydr Polym 131:355–362

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Liu D, Wang W et al (2015b) Cordyceps sinensis polysaccharide inhibits PDGF-BB-induced inflammation and ROS production in human mesangial cells. Carbohydr Polym 125:135–145

    Article  CAS  PubMed  Google Scholar 

  • Wei HP, Ye XL, Zhang HY et al (2008) Investigations on cordycepin production by solid culture of Cordyceps militaris. Zhongguo Zhong Yao Za Zhi 33(19):2159–2162

    CAS  PubMed  Google Scholar 

  • Wen L, Tang YL, Yin QF et al (2005) Assays on nutrient and effective ingredients in different parts of Cordyceps militaris. Zhongguo Zhong Yao Za Zhi 30(9):659–661

    CAS  PubMed  Google Scholar 

  • Xiang F, Lin L, Hu M et al (2016) Therapeutic efficacy of a polysaccharide isolated from Cordyceps sinensis on hypertensive rats. Int J Biol Macromol 82:308–314

    Article  CAS  PubMed  Google Scholar 

  • Xie CY, Gu ZX, Fan GJ et al (2009) Production of cordycepin and mycelia by submerged fermentation of Cordyceps militaris in mixture natural culture. Appl Biochem Biotechnol 158(2):483–492

    Article  CAS  PubMed  Google Scholar 

  • Xiong C, Xia Y, Zheng P et al (2013) Increasing oxidative stress tolerance and subculturing stability of Cordyceps militaris by overexpression of a glutathione peroxidase gene. Appl Microbiol Biotechnol 97(5):2009–2015

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Zhang W, Shi P et al (2005) Effects of exopolysaccharide fraction (EPSF) from a cultivated Cordyceps sinensis fungus on c-Myc, c-Fos, and VEGF expression in B16 melanoma-bearing mice. Pathol Res Pract 201(11):745–750

    Article  PubMed  Google Scholar 

  • Yang JL, Xiao W, He HX et al (2008) Molecular phylogenetic analysis of Paecilomyces hepiali and Cordyceps sinensis. Acta Pharm Sin 43(4):421–426

    Article  CAS  Google Scholar 

  • Yang X, Li Y, He Y et al (2015) Cordycepin alleviates airway hyperreactivity in a murine model of asthma by attenuating the inflammatory process. Int Immunopharmacol 26(2):401–408

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Xu L, Zhang S et al (2009) Genetic diversity of Ophiocordyceps sinensis, a medicinal fungus endemic to the Tibetan Plateau: implications for its evolution and conservation. BMC Evol Biol 9(1):290

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng P, Xia Y, Xiao G et al (2011a) Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional Chinese medicine. Genome Biol 12(11):R116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Z, Huang C, Cao L et al (2011b) Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in medicinal fungus Cordyceps militaris. Fungal Biol 115(3):265–274

    Article  CAS  PubMed  Google Scholar 

  • Zheng Z, Jiang K, Huang C et al (2012) Cordyceps militaris (Hypocreales: Cordycipitaceae): transcriptional analysis and molecular characterization of cox1 and group I intron with putative LAGLIDADG endonuclease. World J Microbiol Biotechnol 28(1):371–380

    Article  CAS  PubMed  Google Scholar 

  • Zhou XW, Wang XF, Li QZ (2012) Expression and characteristic of the Cu/Zn superoxide dismutase gene from the insect parasitizing fungus Cordyceps militaris. Mol Biol Rep 39(12):10303–10311

    Article  CAS  PubMed  Google Scholar 

  • Zhu SJ, Pan J, Zhao B et al (2013) Comparisons on enhancing the immunity of fresh and dry Cordyceps militaris in vivo and in vitro. J Ethnopharmacol 149(3):713–719

    Article  PubMed  Google Scholar 

  • Zhu ZY, Liu XC, Dong FY et al (2016) Influence of fermentation conditions on polysaccharide production and the activities of enzymes involved in the polysaccharide synthesis of Cordyceps militaris. Appl Microbiol Biotechnol 100(9):3909–3921

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhungua Pan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Pan, Z. (2018). Research Advancement of Insect Origin Fungus Cordyceps . In: Kumar, D., Gong, C. (eds) Trends in Insect Molecular Biology and Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-61343-7_12

Download citation

Publish with us

Policies and ethics