Advertisement

Research Advancement of Insect Origin Fungus Cordyceps

  • Zhungua Pan
Chapter

Abstract

Chinese caterpillar fungus, Cordyceps sinensis, is a traditional Chinese medicine that parasitize Hepialidae larvae and grows on mountain at an altitude of 3000 m high. After infection, the larvae become rigid, latent feel the humidity in the Cordyceps topsoil depth of 10 cm, which is formed by a stiff end pumping out insects long rod-like stroma (i.e., Cordyceps sinensis fruiting and sclerotium of dead insects (larvae corpse) to form a composite) when the spring comes and snow melt. It is mainly produced in Qinghai, Tibet, Sichuan, Yunnan, Gansu, Guizhou, and other provinces and autonomous regions of the alpine zone and snow-capped mountains and plains.

Further reading

  1. Ahn YJ, Park SJ, Lee SG et al (2000) Cordycepin: selective growth inhibitor derived from liquid culture of Cordyceps militaris against Clostridium spp. J Agric Food Chem 48(7):2744–2748CrossRefPubMedGoogle Scholar
  2. Cannon PF, Kirk PM (2007) Fungal families of the world. CabinetMaker:456Google Scholar
  3. Chang Y, Hsu WH, Lu WJ et al (2015) Inhibitory mechanisms of CME-1, a novel polysaccharide from the mycelia of Cordyceps sinensis, in platelet activation. Curr Pharm Biotechnol 16(5):451–461CrossRefPubMedGoogle Scholar
  4. Chen Y, Wang W, Yang Y et al (1997) Genetic divergence of Cordyceps sinensis as estimated by random amplified polymorphic DNA analysis. Acta Genet Sin 24(5):410–416PubMedGoogle Scholar
  5. Chen Y-C, Huang Y-L, Huang B-M (2005) Cordyceps sinensis mycelium activates PKA and PKC signal pathways to stimulate steroidogenesis in MA-10 mouse Leydig tumor cells. Int J Biochem Cell Biol 37(1):214–223CrossRefPubMedGoogle Scholar
  6. Cho HJ, Cho JY, Rhee MH et al (2007) Inhibitory effects of cordycepin (3´-deoxyadenosine), a component of Cordyceps militaris, on human platelet aggregation induced by thapsigargin. J Microbiol Biotechnol 17(7):1134–1138Google Scholar
  7. Choi HN, Jang YH, Kim MJ et al (2014) Cordyceps militaris alleviates non-alcoholic fatty liver disease in mice. Nutr Res Pract 8(2):172–176CrossRefPubMedPubMedCentralGoogle Scholar
  8. Das SK, Masuda M, Hatashita M et al (2008) A new approach for improving cordycepin productivity in surface liquid culture of Cordyceps militaris using high-energy ion beam irradiation. Lett Appl Microbiol 47(6):534–538CrossRefPubMedGoogle Scholar
  9. Hong T, Cui LK, Wen J et al (2015) Cordycepin protects podocytes from injury mediated by complements complex C5b-9. Sichuan Da Xue Xue Bao Yi Xue Ban 46(2):173–178. 227PubMedGoogle Scholar
  10. Hur H (2008) Chemical Ingredients of Cordyceps militaris. Mycobiology 36(4):233–235CrossRefPubMedPubMedCentralGoogle Scholar
  11. Jagger DV, Kredich NM, Guarino AJ (1961) Inhibition of Ehrlich mouse ascites tumor growth by cordycepin. Cancer Res 21(2):216–220PubMedGoogle Scholar
  12. Jeong MH, Lee CM, Lee SW et al (2013) Cordycepin-enriched Cordyceps militaris induces immunomodulation and tumor growth delay in mouse-derived breast cancer. Oncol Rep 30(4):1996–2002CrossRefPubMedGoogle Scholar
  13. Jing Y, Cui X, Chen Z et al (2014) Elucidation and biological activities of a new polysaccharide from cultured Cordyceps militaris. Carbohydr Polym 102:288–296CrossRefPubMedGoogle Scholar
  14. Jing Y, Zhu J, Liu T et al (2015) Structural characterization and biological activities of a novel polysaccharide from cultured Cordyceps militaris and its sulfated derivative. J Agric Food Chem 63(13):3464–3471CrossRefPubMedGoogle Scholar
  15. Jong-Ho KOH, Kwang-Won YU, Hyung-Joo SUH, Yang-Moon CHOI, Tae-Seok AHN (2002) Activationofmacrophages and the intestinal immune system by an orally administered decoction fromcultured mycelia of Cordyceps sinensis. Biosci Biotechnol Biochem 66:407–411CrossRefGoogle Scholar
  16. Koh J-H, Kim K-M, Kim J-M et al (2003) Antifatigue and antistress effect of the hot-water fraction from mycelia of Cordyceps sinensis. Biol Pharm Bull 26(5):691–694CrossRefPubMedGoogle Scholar
  17. Kuo HC, Su YL, Yang HL et al (2005) Identification of Chinese medicinal fungus Cordyceps sinensis by PCR-single-stranded conformation polymorphism and phylogenetic relationship. J Agric Food Chem 53(10):3963–3968CrossRefPubMedGoogle Scholar
  18. Lee DH, Kim HH, Lim DH et al (2015a) Effect of Cordycepin-Enriched WIB801C from Cordyceps militaris Suppressing Fibrinogen Binding to Glycoprotein IIb/IIIa. Biomol Ther 23(1):60–70CrossRefGoogle Scholar
  19. Lee H, Kim YJ, Kim HW et al (2006) Induction of apoptosis by Cordyceps militaris through activation of caspase-3 in leukemia HL-60 cells. Biol Pharm Bull 29(4):670–674CrossRefPubMedGoogle Scholar
  20. Lee JS, Kwon DS, Lee KR et al (2015b) Mechanism of macrophage activation induced by polysaccharide from Cordyceps militaris culture broth. Carbohydr Polym 120:29–37CrossRefPubMedGoogle Scholar
  21. Liang HH, Cheng Z, Yang XL et al (2008) Genetic diversity and structure of Cordyceps sinensis populations from extensive geographical regions in China as revealed by inter-simple sequence repeat markers. J Microbiol 46(5):549–556CrossRefPubMedGoogle Scholar
  22. Liao Y, Ling J, Zhang G et al (2015) Cordycepin induces cell cycle arrest and apoptosis by inducing DNA damage and up-regulation of p53 in Leukemia cells. Cell Cycle 14(5):761–771CrossRefPubMedPubMedCentralGoogle Scholar
  23. Lu Q, Mei W, Luo S et al (2015) Apoptosis of Bel-7402 human hepatoma cells induced by a ruthenium(II) complex coordinated by cordycepin through the p53 pathway. Mol Med Rep 11(6):4424–4430CrossRefPubMedGoogle Scholar
  24. Mao XB, Zhong JJ (2004) Hyperproduction of cordycepin by two-stage dissolved oxygen control in submerged cultivation of medicinal mushroom Cordyceps militaris in bioreactors. Biotechnol Prog 20(5):1408–1413CrossRefPubMedGoogle Scholar
  25. Pan BS, Wang YK, Lai MS et al (2015) Cordycepin induced MA-10 mouse Leydig tumor cell apoptosis by regulating p38 MAPKs and PI3K/AKT signaling pathways. Sci Rep 5:13372CrossRefPubMedPubMedCentralGoogle Scholar
  26. Stensrud Q, Schumacher T, Shalchian-Tabrizi K et al (2007) Accelerated nrDNA evolution and profound AT bias in the medicinal fungus Cordyceps sinensis. Mycol Res 111(4):409–415CrossRefPubMedGoogle Scholar
  27. Wang L, Xu N, Zhang J et al (2015a) Antihyperlipidemic and hepatoprotective activities of residue polysaccharide from Cordyceps militaris SU-12. Carbohydr Polym 131:355–362CrossRefPubMedGoogle Scholar
  28. Wang Y, Liu D, Wang W et al (2015b) Cordyceps sinensis polysaccharide inhibits PDGF-BB-induced inflammation and ROS production in human mesangial cells. Carbohydr Polym 125:135–145CrossRefPubMedGoogle Scholar
  29. Wei HP, Ye XL, Zhang HY et al (2008) Investigations on cordycepin production by solid culture of Cordyceps militaris. Zhongguo Zhong Yao Za Zhi 33(19):2159–2162PubMedGoogle Scholar
  30. Wen L, Tang YL, Yin QF et al (2005) Assays on nutrient and effective ingredients in different parts of Cordyceps militaris. Zhongguo Zhong Yao Za Zhi 30(9):659–661PubMedGoogle Scholar
  31. Xiang F, Lin L, Hu M et al (2016) Therapeutic efficacy of a polysaccharide isolated from Cordyceps sinensis on hypertensive rats. Int J Biol Macromol 82:308–314CrossRefPubMedGoogle Scholar
  32. Xie CY, Gu ZX, Fan GJ et al (2009) Production of cordycepin and mycelia by submerged fermentation of Cordyceps militaris in mixture natural culture. Appl Biochem Biotechnol 158(2):483–492CrossRefPubMedGoogle Scholar
  33. Xiong C, Xia Y, Zheng P et al (2013) Increasing oxidative stress tolerance and subculturing stability of Cordyceps militaris by overexpression of a glutathione peroxidase gene. Appl Microbiol Biotechnol 97(5):2009–2015CrossRefPubMedGoogle Scholar
  34. Yang J, Zhang W, Shi P et al (2005) Effects of exopolysaccharide fraction (EPSF) from a cultivated Cordyceps sinensis fungus on c-Myc, c-Fos, and VEGF expression in B16 melanoma-bearing mice. Pathol Res Pract 201(11):745–750CrossRefPubMedGoogle Scholar
  35. Yang JL, Xiao W, He HX et al (2008) Molecular phylogenetic analysis of Paecilomyces hepiali and Cordyceps sinensis. Acta Pharm Sin 43(4):421–426CrossRefGoogle Scholar
  36. Yang X, Li Y, He Y et al (2015) Cordycepin alleviates airway hyperreactivity in a murine model of asthma by attenuating the inflammatory process. Int Immunopharmacol 26(2):401–408CrossRefPubMedGoogle Scholar
  37. Zhang Y, Xu L, Zhang S et al (2009) Genetic diversity of Ophiocordyceps sinensis, a medicinal fungus endemic to the Tibetan Plateau: implications for its evolution and conservation. BMC Evol Biol 9(1):290CrossRefPubMedPubMedCentralGoogle Scholar
  38. Zheng P, Xia Y, Xiao G et al (2011a) Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional Chinese medicine. Genome Biol 12(11):R116CrossRefPubMedPubMedCentralGoogle Scholar
  39. Zheng Z, Huang C, Cao L et al (2011b) Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in medicinal fungus Cordyceps militaris. Fungal Biol 115(3):265–274CrossRefPubMedGoogle Scholar
  40. Zheng Z, Jiang K, Huang C et al (2012) Cordyceps militaris (Hypocreales: Cordycipitaceae): transcriptional analysis and molecular characterization of cox1 and group I intron with putative LAGLIDADG endonuclease. World J Microbiol Biotechnol 28(1):371–380CrossRefPubMedGoogle Scholar
  41. Zhou XW, Wang XF, Li QZ (2012) Expression and characteristic of the Cu/Zn superoxide dismutase gene from the insect parasitizing fungus Cordyceps militaris. Mol Biol Rep 39(12):10303–10311CrossRefPubMedGoogle Scholar
  42. Zhu SJ, Pan J, Zhao B et al (2013) Comparisons on enhancing the immunity of fresh and dry Cordyceps militaris in vivo and in vitro. J Ethnopharmacol 149(3):713–719CrossRefPubMedGoogle Scholar
  43. Zhu ZY, Liu XC, Dong FY et al (2016) Influence of fermentation conditions on polysaccharide production and the activities of enzymes involved in the polysaccharide synthesis of Cordyceps militaris. Appl Microbiol Biotechnol 100(9):3909–3921CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Biology and Basic Medical ScienceSoochow UniversitySuzhouChina

Personalised recommendations