Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The vast majority of theoretical and numerical studies of buoyancy-thermocapillary convection use one-sided models [9, 1922] that only consider the convection in the liquid phase, while ignoring transport through the gas phase and the phase change across the liquid-gas interface. The heat and mass transport in the gas phase are incorporated indirectly through boundary conditions at the liquid-gas interface, and the interface is assumed to be rigid (and, in most of the cases, flat). Such an approach might be justifiable for nonvolatile liquids, since air is a relatively poor conductor of heat, and for the volatile liquids at ambient (atmospheric) conditions when phase change is strongly suppressed. Indeed, the predictions of such models are for the most part consistent with experimental studies of volatile and nonvolatile fluids at ambient (atmospheric) conditions [1, 912]. However, for volatile liquids at reduced air pressure, phase change can lead to significant heat fluxes in the liquid layer due to the latent heat released or absorbed at the interface, and the interfacial mass flux (which defines the latent heat flux) cannot be computed reliably without a proper model of bulk mass transport in the gas phase. Therefore a two-sided model is required, where the heat and mass transport in both phases are modeled explicitly. Two-sided models have been formulated previously [49, 50, 82, 8791]. These models, however, assume rather than compute the shape of the liquid-gas interface, employ extremely restrictive assumptions and/or use a very crude description of one of the two phases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Li, R.O. Grigoriev, M. Yoda, Experimental study of the effect of noncondensables on buoyancy-thermocapillary convection in a volatile low-viscosity silicone oil. Phys. Fluids 26, 122112 (2014)

    Article  ADS  Google Scholar 

  2. D. Villers, J.K. Platten, Coupled buoyancy and marangoni convection in acetone: experiments and comparison with numerical simulations. J. Fluid Mech. 234, 487–510 (1992)

    Article  ADS  Google Scholar 

  3. R.J. Riley, G.P. Neitzel, Instability of thermocapillary–buoyancy convection in shallow layers. Part 1. Characterization of steady and oscillatory instabilities. J. Fluid Mech. 359, 143–164 (1998)

    Google Scholar 

  4. H. Ben Hadid, B. Roux, Buoyancy- and thermocapillary-driven flows in differentially heated cavities for low-Prandtl-number fluids. J. Fluid Mech. 235, 1–36 (1992)

    Article  ADS  MATH  Google Scholar 

  5. V.M. Shevtsova, A.A. Nepomnyashchy, J.C. Legros, Thermocapillary-buoyancy convection in a shallow cavity heated from the side. Phys. Rev. E 67, 066308 (2003)

    Article  ADS  Google Scholar 

  6. A. Oron, S.H. Davis, S.G. Bankoff, Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69(3), 931–980 (1997)

    Article  ADS  Google Scholar 

  7. K. Kafeel, A. Turan, Axi-symmetric simulation of a two phase vertical thermosyphon using Eulerian two-fluid methodology. Heat Mass Transf. 49, 1089–1099 (2013)

    Article  ADS  Google Scholar 

  8. B. Fadhl, L.C. Wrobel, H. Jouhara, Numerical modelling of the temperature distribution in a two-phase closed thermosyphon. Appl. Therm. Eng. 60, 122–131 (2013)

    Article  Google Scholar 

  9. F.M. White, Viscous Fluid Flow, 2nd edn. (McGraw-Hill, New York, 1991)

    Google Scholar 

  10. J. Zhang, S.J. Watson, H. Wong, Fluid flow and heat transfer in a dual-wet micro heat pipe. J. Fluid Mech. 589, 1–31 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. H. Wang, J.Y. Murthy, S.V. Garimella, Transport from a volatile meniscus inside an open microtube. Int. J. Heat Mass Transf. 51, 3007–3017 (2008)

    Article  MATH  Google Scholar 

  12. H. Wang, Z. Pan, S.V. Garimella, Numerical investigation of heat and mass transfer from an evaporating meniscus in a heated open groove. Int. J. Heat Mass Transfer 54, 3015–3023 (2011)

    Article  MATH  Google Scholar 

  13. T. Kaya, J. Goldak, Three-dimensional numerical analysis of heat and mass transfer in heat pipes. Heat Mass Transf. 43, 775–785 (2007)

    Article  ADS  Google Scholar 

  14. S. Chapman, T. Cowling, The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction, and Diffusion in Gases (Cambridge University Press, Cambridge, 1990)

    MATH  Google Scholar 

  15. R.W. Schunk, Mathematical structure of transport equations for multispecies flows. Rev. Geophys. 15(4), 429–445 (1977)

    Article  ADS  Google Scholar 

  16. H. Grad, On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2(4), 331–407 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  17. B.B. Hamel, Two-fluid hydrodynamic equations for a neutral, disparate-mass, binary mixture. Phys. Fluids 9, 12 (1966)

    Article  ADS  Google Scholar 

  18. M.J. Moran, H.N. Shapiro, Fundamentals of Engineering Thermodynamics (Wiley, New York, 2004)

    Google Scholar 

  19. C.L. Yaws, Yaws’ Handbook of Thermodynamic and Physical Properties of Chemical Compounds (Electronic Edition): Physical, Thermodynamic and Transport Properties for 5,000 Organic Chemical Compounds (Knovel, Norwich, 2003)

    Google Scholar 

  20. C.L. Yaws, Yaws’ Thermophysical Properties of Chemicals and Hydrocarbons (Electronic Edition) (Knovel, Norwich, 2009)

    Google Scholar 

  21. R. Reid, J. Prausnitz, B. Poling, The Properties of Gases and Liquids. Chemical Engineering Series (McGraw-Hill, New York, 1987)

    Google Scholar 

  22. K.E. Grew, T.L. Ibbs, Thermal Diffusion in Gases. Cambridge Monographs on Physics (Cambridge University Press, Cambridge, 1952)

    Google Scholar 

  23. L. Landau, E. Lifshitz, Fluid Mechanics (Elsevier, Amsterdam, 2013)

    MATH  Google Scholar 

  24. R.B. Bird, Dynamics of Polymeric Liquids (Wiley, New York, 1977)

    Google Scholar 

  25. J. Hirschfelder, C. Curtiss, R. Bird, Molecular Theory of Gases and Liquids. Structure of Matter Series (Wiley, New York, 1954)

    MATH  Google Scholar 

  26. O.L. Flaningam, Vapor pressures of poly(dimethylsiloxane) oligomers. J. Chem. Eng. Data 31, 266–272 (1986)

    Article  Google Scholar 

  27. C.R. Wilke, Viscosity equation for gas mixtures. J. Chem. Phys. 18, 517–519 (1950)

    Article  ADS  Google Scholar 

  28. W. Sutherland, LII. The viscosity of gases and molecular force. Philos. Mag. Ser. 5 36(223), 507–531 (1893)

    Google Scholar 

  29. F. White, Heat and Mass Transfer. Addison-Wesley Series in Mechanical Engineering (Addison-Wesley, Reading, MA, 1988)

    Google Scholar 

  30. R.W. Schrage, A Theoretical Study of Interface Mass Transfer (Columbia University Press, New York, 1953)

    Google Scholar 

  31. G. Wyllie, Evaporation and surface structure of liquids. Proc. R. Soc. Lond. 197, 383–395 (1949)

    Article  ADS  Google Scholar 

  32. R. Rudolf, M. Itoh, Y. Viisanen, P. Wagner, Sticking probabilities for condensation of polar and nonpolar vapor molecules, in Nucleation and Atmospheric Aerosols, ed. by N. Fukuta, P.E. Wagner (A. Deepak Publishing, Hampton, 1992), pp. 165–168

    Google Scholar 

  33. G. Balekjian, D.L. Katz, Heat transfer from superheated vapors to a horizontal tube. AIChE J. 4(1), 43–48 (1958)

    Article  Google Scholar 

  34. J. Klentzman, V.S. Ajaev, The effect of evaporation on fingering instabilities. Phys. Fluids 21, 122101 (2009)

    Article  ADS  MATH  Google Scholar 

  35. S. Kjelstrup, D. Bedeaux, Non-Equilibrium Thermodynamics of Heterogeneous Systems (World Scientific, Singapore, 2008)

    Book  MATH  Google Scholar 

  36. H. Struchtrup, S. Kjelstrup, D. Bedeaux, Temperature-difference-driven mass transfer through the vapor from a cold to a warm liquid. Phys. Rev. E 85, 061201 (2012)

    Article  ADS  Google Scholar 

  37. C.A. Ward, R.D. Findlay, M. Rizk, Statistical rate theory of interfacial transport. I. Theoretical development. J. Chem. Phys. 76, 5599 (1982)

    Google Scholar 

  38. C.A. Ward, G. Fang, Expression for predicting liquid evaporation flux: statistical rate theory approach. Phys. Rev. E 59, 429–440 (1999)

    Article  ADS  Google Scholar 

  39. G. Fang, C.A. Ward, Temperature measured close to the interface of an evaporating liquid. Phys. Rev. E 59, 417–428 (1999)

    Article  ADS  Google Scholar 

  40. V.K. Badam, V. Kumar, F. Durst, K. Danov, Experimental and theoretical investigations on interfacial temperature jumps during evaporation. Exp. Thermal Fluid Sci. 32, 276–292 (2007)

    Article  Google Scholar 

  41. M. Bond, H. Struchtrup, Mean evaporation and condensation coefficients based on energy dependent condensation probability. Phys. Rev. E 70, 061605 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Qin, T. (2017). Mathematical Model. In: Buoyancy-Thermocapillary Convection of Volatile Fluids in Confined and Sealed Geometries. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-61331-4_2

Download citation

Publish with us

Policies and ethics