Skip to main content

Object Trajectory Prediction with Scarce Environment Information

  • Chapter
  • First Online:
Biologically Rationalized Computing Techniques For Image Processing Applications

Abstract

This paper presents a prototype called HOLOTECH that implements a model prediction using a limited description of the environment to support blind people. The goal is to perform fast detection and identification of obstacles to provide information about collision riskiness and location. The prediction is not probabilistic but statistic, in order to improve the inferences results. The model works fine using low-precision images drifted from real-time camera of a regular Android cell phone supported with ultrasonic sensors. The main focus of this work is how to pre-process images on the fly in order to be able to train and to tune the plastic learning module, improving the object’s trajectory prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhou Y et al (2017) An efficient data processing framework for mining the massive trajectory of moving objects. Comput Environ Urban Syst 61:129–140

    Article  Google Scholar 

  2. Zhang J et al (2017) Probabilistic modelling of the drifting trajectory of an object under the effect of wind and current for maritime search and rescue. Ocean Eng 129:253–264

    Article  Google Scholar 

  3. Valsamis A et al. (2016) Employing traditional machine learning algorithms for big data streams analysis: The case of object trajectory prediction. J Sys Softw http://dx.doi.org/10.1016/j.jss.2016.06.016 (In press)

  4. Sheng-Zheng W, Hao-Bing N, Chao-Jian S (2014) A drifting trajectory prediction model based on object shape and stochastic motion features. J Hydrodyn 26:951–959

    Google Scholar 

  5. Magdy N et al (2016) A generic trajectory similarity operator in moving object databases. Egyptian Informatics J. doi:10.1016/j.eij.2016.07.001 In press

    Google Scholar 

  6. Lettich F (2016) Detecting avoidance behaviors between moving object trajectories. Data Knowl Eng 102:22–41

    Article  Google Scholar 

  7. Kong X et al (2016) Urban traffic congestion estimation and prediction based on floating car trajectory data. Future Gener Comput Sys 61:97–107

    Article  Google Scholar 

  8. Gan W, Lee M, Wu C, Kuo CJ (2016) Object tracking with temporal prediction and spatial lrefinement (TPSR). Sig Process Image Commun 47:303–312

    Article  Google Scholar 

  9. Bourdonnaye FL, Setchi R, Zanni-Merk C (2016) Gaze trajectory prediction in the context of social robotics. IFAC-PapersOnLine 49:126–131

    Article  Google Scholar 

  10. Abraham S, Lal PS (2012) Spatio-temporal similarity of network-constrained moving object trajectories using sequence alignment of travel locations. Transp Res Part C 23:109–123

    Article  Google Scholar 

  11. Mironov K, Vladimirova I, Pongratz M (2015) Processing and Forecasting the Trajectory of a Thrown Object Measured by the Stereo Vision System 48:28–35

    Google Scholar 

  12. Fu et al X (2014) Probabilistic trajectory prediction in intelligent driving. In: Proceedings of the 19th world congress of the international federation of automatic control, pp 2664-2672

    Google Scholar 

  13. Li X et al (2017) Development of a new integrated local trajectory planning and tracking control framework for autonomous ground vehicles. Mech Syst Signal Process 87:118–137

    Article  Google Scholar 

  14. Xu F, Lam K, Dai Q (2011) Video-object segmentation and 3D-trajectory estimation for monocular video sequences. Image Vis Comput 29:190–205

    Article  Google Scholar 

  15. Ciccio CD et al (2016) Detecting flight trajectory anomalies and predicting diversions in freight transportation. Decis Support Syst 88:1–17

    Article  Google Scholar 

  16. ArduinoNano (2015) http://arduino.cc/en/Main/ArduinoBoardNano

  17. Igoe T (2012) Making Things Talk, 2nd edn

    Google Scholar 

  18. Krasula L, Klima M, Rogard E, Jeanblanc E (2012) MATLAB-based applications for image processing and image quality assessment part II. Experimental results

    Google Scholar 

  19. Bala A (2012) An improved watershed image segmentation technique using MATLAB. Int J Sci Eng Res 3(6)

    Google Scholar 

  20. Park JS, López De Luise D, Pérez J (2015) HOLOTECH prototype. Sound language for environment’s understanding. Int J Learn Technol Inderscience Publishers, Geneva

    Google Scholar 

  21. http://www.mathworks.com/help/vision/ug/train-a-cascade-object-detector.html. 2015

  22. López De Luise D (2012) Ingeniería en Inteligencia Computacional (Computational Intelligence Engineering). In: Rovarini P (eds) (UTN-FRT), 104 pp

    Google Scholar 

  23. https://cogcomp.cs.illinois.edu/Data/Car/

  24. Chen Q, Kotani K, Lee FF, Ohmi T A fast search algorithm for large video database using hog based features

    Google Scholar 

  25. Abada L, Aouat S Facial shape-from-shading using features detection method. doi:10.1504/IJAIP.2016.074774, pp 3–19

  26. Carletta Jean (1996) Assessing agreement on classification tasks: the kappa statistic. Comput Linguist 22(2):249–254

    Google Scholar 

  27. Arditi A, YingLi T (2013) User Interface preference in the design of a camera-base navigation and wayfinding Aid. J Vis Impairement Blindness

    Google Scholar 

  28. HS MAHDI Image understanding using object identification and spatial relationship

    Google Scholar 

  29. Bairagi B, Dey B, Sarkar B, Sanyal S Selection of robotic systems in fuzzy multi criteria decision-making environment doi:10.1504/IJCSYSE.2015.067798, pp 32–42

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Sung Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Park, J.S., De Luise, D.L., Hemanth, J. (2018). Object Trajectory Prediction with Scarce Environment Information. In: Hemanth, J., Balas , V. (eds) Biologically Rationalized Computing Techniques For Image Processing Applications. Lecture Notes in Computational Vision and Biomechanics, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-319-61316-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61316-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61315-4

  • Online ISBN: 978-3-319-61316-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics