Skip to main content

Modified Starches Used as Additives in Enhanced Oil Recovery (EOR)

  • Chapter
  • First Online:
Industrial Applications of Renewable Biomass Products

Abstract

Enhanced oil recovery (EOR) implementation arises as a supplementary technology to conventional ones, optimizing the not-easily recoverable oil phase. Estimation of oil remnant in reservoirs approaches to seven billion of barrels, after primary and secondary recoveries. One of the EOR strategies implies the use of displacing fluids, such as water-soluble polymers, which are pumped into the reservoir forcing the oil to flow toward the production wells. Thus, the state of the art related to the use of different starch derivatives in EOR is included in this chapter. Besides, diverse synthesis methodologies of the modified starches are presented, analyzing the optimal conditions of each reaction. Particularly, the synthesis of cationic starches is reported since they are the most used in EOR. Modification degree and physicochemical properties of the derivatives are included. Rheological and flow properties of displacing fluids are also discussed as a function of starch concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Muntasheri G, Nasr-El-Din H, Hussein I (2007) A rheological investigation of a high temperature organic gel used for water shut-off treatments. J Pet Sci Eng 59(1–2):73–83

    Article  CAS  Google Scholar 

  • Ayoub A, Bliard C (2003) Cationisation of glycerol plasticised wheat starch under microhydric molten conditions. Starch/Stärke 55:297–303

    Article  CAS  Google Scholar 

  • Ayoub A, Berzin F, Tighzert L et al (2004) Study of the thermoplastic wheat starch cationisation reaction under molten condition. Starch/Stärke 56:513–519

    Article  CAS  Google Scholar 

  • Bao M, Kong X, Jiang G et al (2009) Laboratory study on activating indigenous microorganisms to enhance oil recovery in Shengli oilfield. J Pet Sci Eng 66:42–46

    Article  CAS  Google Scholar 

  • Barrios S, Contreras J, López-Carrasquero F et al (2012) Chemical modification of cassava starch by carboxymethylation reactions using sodium monochloro acetate as modifying agent. Revista de la Facultad de Ingeniería UCV 27(2):97–105

    CAS  Google Scholar 

  • Bendoraitiene J, Klimaviciute R, Zemaitaitis A (2012) Preparation of high substituted cationic starch in presence of organic bases. Starch/Stärke 64:696–703

    Article  CAS  Google Scholar 

  • Bertolini A (2009) Trends in starch applications. In: Bertolini A (ed) Starches: characterization, properties, and applications. CRC Press, Boca Raton, pp 1–19

    Chapter  Google Scholar 

  • Butrim S, Butrim N, Bil’dyukevich T et al (2008) Synthesis and physicochemical properties of low-substituted cationic ethers of starch. Russ J Appl Chem 81:2026–2032

    Article  CAS  Google Scholar 

  • Chang Y, Eom J, Kim J et al (2010) Preparation and characterization of shape memory polymer networks based on carboxylated telechelic poly(ε-caprolactone)/epoxidized natural rubber blends. J Ind Eng Chem 16:256–260

    Article  CAS  Google Scholar 

  • Chen Q, Yu H, Wang L et al (2015) Recent progress in chemical modification of starch and its applications. RSC Adv 5:67459–67474

    Article  CAS  Google Scholar 

  • Daripa P, Pasa G (2004) An optimal viscosity profile in enhanced oil recovery by polymer flooding. Int J Eng Sci 42:2029–2039

    Google Scholar 

  • Datta R, Nair R, Pandey A et al (2014) Hydroxyeyhyl starch: controversies revisited. J Anaesthesiol Clin Pharmacol 30:472–480

    Article  CAS  Google Scholar 

  • Eutamene M, Benbakhti A, Khodja M et al (2009) Preparation and aqueous properties of starch-grafted polyacrylamide copolymers. Starch/Stärke 61(2):81–91

    Article  CAS  Google Scholar 

  • Fink J (2015) Petroleum engineer’s guide to oil field chemicals and fluids, 2nd edn. Elsevier, Oxford

    Google Scholar 

  • Flores R (2006) Desarrollo de almidones funcionalizados y evaluación de las propiedades reológicas para su aplicación en la industria petrolera. Undergraduate Thesis, Simón Bolívar University, Caracas

    Google Scholar 

  • Fu J, Qiao R, Zhu L et al (2013) Application of a novel cationic starch in enhanced oil recovery and its adsorption properties. Korean J Chem Eng 30(1):82–86

    Article  CAS  Google Scholar 

  • Gao C (2015) Application of a novel biopolymer to enhance oil recovery. J Pet Explor Prod Technol 6(4):749–753

    Article  Google Scholar 

  • Gonera A (2004) Aminofunctional starch derivatives: synthesis, analysis, and application. Cuvillier Verlag, Göttingen

    Google Scholar 

  • Haack V, Heinze T, Oelmeyer G et al (2002) Starch derivatives of high degree of functionalization, 8. Synthesis and flocculation behavior of cationic starch polyelectrolytes. Macromol Mater Eng 287:495–502

    Article  CAS  Google Scholar 

  • Hebeish A, Higazy A, El-Shafei A et al (2010) Synthesis of carboxymethyl cellulose (CMC) and starch-based hybrids and their applications in flocculation and sizing. Carbohydr Polym 79:60–69

    Article  CAS  Google Scholar 

  • Heinz T, Koschell A (2005) Carboxymethyl ethers of cellulose and starch – a review. Macromol Symp 223:13–39

    Article  Google Scholar 

  • Heinze T, Haak V, Rensing S (2004) Starch derivatives of high degree of functionalization. 7. Preparation of cationic 2-hydroxypropyltrimethylammonium chloride starches. Starch/Stärke 56:288–296

    Article  CAS  Google Scholar 

  • Hou J, Li Z, Cao X et al (2009) Integrating genetic algorithm and support vector machine for polymer flooding production performance prediction. J Pet Sci Eng 68:29–39

    Article  CAS  Google Scholar 

  • Huber K, BeMiller J (2001) Location of sites of reaction within starch granules. Cereal Chem 78:173–118

    Article  CAS  Google Scholar 

  • Jaspreet S, Lovedeep K, Mccarthy O (2007) Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications – a review. Food Hydrocoll 21:1–22

    Article  Google Scholar 

  • Jeon Y, Lei J, Kim J (2008) Dye adsorption characteristics of alginate/polyaspartate hydrogels. J Ind Eng Chem 14:726–731

    Article  CAS  Google Scholar 

  • Jie Y, Wem-Ren C, Manurung R et al (2004) Exploratory studies on the carboxymethylation of cassava starch in water-miscible organic media. Starch/Stärke 56:100–107

    Article  Google Scholar 

  • Kalia S, Sabaa M (eds) (2013) Polysaccharide based graft copolymers. Springer, Berlin Heidelberg

    Google Scholar 

  • Karabakal U, Bagci S (2004) Determination of wettability and its effect on waterflood performance in limestone medium. Energy Fuel 18:438–449

    Google Scholar 

  • Kavaliauskaite R, Klimaviciute R, Zemaitaitis A (2008) Factors influencing production of cationic starches. Carbohydr Polym 73:665–675

    Article  CAS  Google Scholar 

  • Kittipongpatana O, Sirithunyalug J, Laenger R (2006) Preparation and physicochemical properties of sodium carboxymethyl mungbean starches. Carbohydr Polym 63:105–112

    Article  CAS  Google Scholar 

  • Klimaviciute R, Riauka A, Zemaitaitis A (2007) The binding of anionic dyes by cross-linked cationic starches. J Polym Res 14:67–73

    Article  CAS  Google Scholar 

  • Kuo W, Lai H (2007) Changes of property and morphology of cationic corn starches. Carbohydr Polym 69:544–553

    Article  CAS  Google Scholar 

  • Kuo W, Lai H (2009) Effects of reaction conditions on the physicochemical properties of cationic starch studied by RSM. Carbohydr Polym 75:627–635

    Article  CAS  Google Scholar 

  • Lawal O, Lechner M, Hartmann B et al (2007) Carboxymethyl cocoyam starch: synthesis, characterisation and influence of reaction parameters. Starch/Stärke 59:224–233

    Article  CAS  Google Scholar 

  • Lazik W, Heinz T, Pfeiffer K et al (2002) Starch derivatives of a high degree of functionalization. VI multistep carboxymethylation. J Appl Polym Sci 86:743–752

    Article  CAS  Google Scholar 

  • Leslie T, Xiao H, Dong M (2005) Tailor-modified starch/cyclodextrin-based polymers for use in tertiary oil recovery. J Pet Sci Eng 46:225–232

    Article  CAS  Google Scholar 

  • Mark H (2013) Encyclopedia of polymer science and technology, concise, 3rd edn. Wiley, New Jersey

    Google Scholar 

  • Mollega S, Barrios S, Freijoo J et al (2011) Modificación química de almidón de juca nativo mediante la reacción de carboximetilación en medio acuoso. Revista de la Facultad de Ingeniería de la Universidad Central de Venezuela 26(1):117–128

    CAS  Google Scholar 

  • Moorthy S, Andersson L, Eliasson A et al (2006) Determination of amylose content in different starches using modulated differential scanning calorimetry. Starch/Stärke 58:209–214

    Article  CAS  Google Scholar 

  • Morel D, Vert M, Bouger Y (2010) First polymer injection in deep offshore field Angola. In: Abstracts of the Annual Technical Conference and Exhibition, Florence, Italy, 19–22 Sept 2010

    Google Scholar 

  • Nezhad S, Cheraghian G (2015) Mechanisms behind injecting the combination of nano-clay particles and polymer solution for enhanced oil recovery. Appl Nanosci 6(6):923–931

    Article  Google Scholar 

  • Pal S, Mal D, Singh R (2005) Cationic starch: an effective flocculating agent. Carbohydr Polym 59:417–423

    Article  CAS  Google Scholar 

  • Pi-xin W, Xiu-li W, Xue D et al (2009) Preparation and characterization of cationic corn starch with a high degree of substitution in dioxane–THF–water media. Carbohydr Res 344:851–855

    Article  Google Scholar 

  • Prado H, Matulewicz M (2014) Cationization of polysaccharides: a path to greener derivatives with many industrial applications. Eur Polym J 52:53–75

    Article  CAS  Google Scholar 

  • Qiao R, Zhu W (2010) Evaluation of modified cationic starch for impeding polymer channeling and in-depth profile control after polymer flooding. J Ind Eng Chem 16:278–282

    Article  CAS  Google Scholar 

  • Qiao R, Zhang R, Zhu W et al (2012) Lab simulation of profile modification and enhanced oil recovery with a quaternary ammonium cationic polymer. J Ind Eng Chem 18:111–115

    Article  CAS  Google Scholar 

  • Radosta S, Vorwerg W, Ebert A et al (2004) Properties of low-substituted cationic starch derivatives prepared by different derivatisation processes. Starch/Stärke 56:277–287

    Article  CAS  Google Scholar 

  • Sabhapondit A, Borthakur A, Haque I (2003) Water soluble acrylamidomethyl propane sulfonate (AMPS) copolymer as an enhanced oil recovery. Energy Fuel 17:683–688

    Article  CAS  Google Scholar 

  • Sableviciene D, Klimaviciute R, Bendoraitiene J et al (2005) Flocculation properties of high-substituted cationic starches. Colloids Surf A Physicochem Eng Asp 259:23–30

    Article  CAS  Google Scholar 

  • Sangseethong K, Ketsilp S, Sriroth K (2005) The role of reation parameters on the preparation and properties of carboxymethyl cassava starch. Starch/Stärke 57:84–93

    Article  CAS  Google Scholar 

  • Shi L, Zhu S, Zhang J et al (2015) Research into polymer injection timing for Bohai heavy oil reservoirs. Pet Sci 12:129–134

    Article  CAS  Google Scholar 

  • Siau C, Karim A, Norziah M et al (2004) Effects of cationization on DSC thermal profiles, pasting and emulsifying properties of sago starch. J Sci Food Agric 84:1722–1730

    Article  CAS  Google Scholar 

  • Silva I, De Melo M, Luvizotto J (2007) Polymer flooding: a sustainable enhanced oil recovery in the current scenario. In: Abstracts of the Latin American Caribbean petroleum engineering conference, Buenos Aires, 15–18 Apr 2007

    Google Scholar 

  • Singh V, Tiwari A, Tripathi D et al (2004) Microwave assisted synthesis of guar-g-polyacrylamide. Carbohydr Polym 51:1–6

    Article  Google Scholar 

  • Singh V, Tiwari A, Pandey S et al (2006) Microwave-accelerated synthesis and characterization of potato starch-g-poly(acrylamide). Starch/Stärke 58:536–543

    Article  CAS  Google Scholar 

  • Singh R, Pal S, Rana V et al (2013) Amphoteric amylopectine: a novel polymeric flocculant. Carbohydr Polym 91:294–299

    Article  CAS  Google Scholar 

  • Song H, Zhang S, Ma X et al (2007) Synthesis and application of starch-graft-poly(AM-co-AMPS) by using a complex initiation system of CS-APS. Carbohydr Polym 69(1):189–195

    Article  CAS  Google Scholar 

  • Sorbie K (2000) Polymer-improved oil recovery. CRC Press, Boca Raton

    Google Scholar 

  • Stojanovic Z, Jeremic K, Jovanovic S et al (2005) A comparison of some methods for the determination of the degree of substitution of carboxymethyl starch. Starch/Stärke 57:79–83

    Article  CAS  Google Scholar 

  • Tara A, Berzin F, Tighzert L et al (2004) Preparation of cationic wheat starch by twin-screw reactive extrusion. J Appl Polym Sci 93:201–208

    Article  CAS  Google Scholar 

  • Tijsen C, Kolk H, Stamhuis E et al (2001) An experimental study on the carboxymethylation of granular potato starch in non-aqueous media. Carbohydr Polym 45:219–226

    Article  CAS  Google Scholar 

  • Van den Hoek P (2004) Impact of induced fractures on sweep and reservoir management in pattern floods. In: Abstracts of the SPE annual technical conference and exhibition, Texas, 24–29 Sept 2004

    Google Scholar 

  • Volkert B, Loth F, Lazik W et al (2004) Highly substituted carboxymethyl starch. Starch/Stärke 56:307–314

    Article  CAS  Google Scholar 

  • Wang Y, Xie W (2010) Synthesis of cationic starch with a high degree of substitution in an ionic liquid. Carbohydr Polym 80:1172–1177

    Article  CAS  Google Scholar 

  • Wang W, Liu Y, Gu Y (2003) Application of a novel polymer system in chemical enhanced oil recovery (EOR). Colloid Polym Sci 281:1046–1054

    Article  CAS  Google Scholar 

  • Wei Y, Cheng F, Zheng H (2008) Synthesis and flocculating properties of cationic starch derivatives. Carbohydr Polym 74:673–679

    Article  CAS  Google Scholar 

  • Wever D, Picchioni F, Broekhuis A (2011) Polymers for enhanced oil recovery: a paradigm for structure–property relationship in aqueous solution. Prog Polym Sci 36:1558–1628

    Article  CAS  Google Scholar 

  • Wiesbrock F, Hoogenboom R, Schubert U (2004) Microwave assisted polymer synthesis: state-of-the-art and future perspectives. Macromol Rapid Commun 25:1739–1764

    Article  CAS  Google Scholar 

  • Zhang L (2001) A review of starches and their derivatives for oil applications in China. Starch/Stärke 53:401–407

    Article  Google Scholar 

  • Zhang M, Ju B-Z, Zhang S et al (2007) Synthesis of cationic hydrolyzed starch with high DS by dry process and use in salt-free dyeing. Carbohydr Polym 69:123–129

    Article  CAS  Google Scholar 

  • Zhou X, Yang J, Qu G (2007) Study on synthesis and properties of modified starch binder foundry. J Mater Process Technol 183:407–411

    Article  CAS  Google Scholar 

  • Zhou X, Yang J, Qian F et al (2010) Synthesis and application of modified starch as a shell-core main adhesive in a foundry. J Appl Polym Sci 116:2893–2900

    CAS  Google Scholar 

Download references

Acknowledgments

Authors wish to thank the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET) for the financial support given to this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo A. Villar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

López, O.V., Castillo, L.A., Ninago, M.D., Ciolino, A.E., Villar, M.A. (2017). Modified Starches Used as Additives in Enhanced Oil Recovery (EOR). In: Goyanes, S., D’Accorso, N. (eds) Industrial Applications of Renewable Biomass Products. Springer, Cham. https://doi.org/10.1007/978-3-319-61288-1_9

Download citation

Publish with us

Policies and ethics