Advertisement

A 4.4mW-TX, 3.6 mW-RX Fully Integrated Bluetooth Low Energy Transceiver for IoT Applications

  • Masoud Babaie
  • Sandro Binsfeld Ferreira
  • Feng-Wei Kuo
  • Robert Bogdan Staszewski
Chapter

Abstract

We present an ultra-low-power Bluetooth Low Energy (BLE) transceiver for Internet of things (IoT) optimized for 28-nm CMOS. A transmitter (TX) employs an all-digital phase-locked loop (ADPLL) with switched current source digitally controlled oscillator (DCO) and class-E/F2 power amplifier. The proposed oscillator combines the benefits of low-supply voltage operation of conventional NMOS cross-coupled oscillators with high current efficiency of the complementary push-pull oscillators. It also reduces 1/f noise and supply pushing, thus allowing the ADPLL, after settling, to reduce its sampling rate or shut it off entirely during a direct DCO modulation. The switching power amplifier operates in class-E/F2 to maximally enhance its efficiency at low output power. The receiver (RX) operates in discrete time (DT) at high sampling rate ( ∼ 10 GSample/sec) with an intermediate frequency (IF) placed beyond 1/f noise corner of MOS devices. Multistage multi-rate charge-sharing (CS) band-pass filters (BPF) are placed to achieve high out-of-band linearity, low noise, and low power consumption. Furthermore, an integrated on-chip matching network serves both PA and LNTA, thus allowing a one-pin direct antenna connection with no extra band selection filters. The transceiver consumes 2.75 mW in RX and 3.7 mW in TX when delivering 0 dBm in BLE.

References

  1. 1.
    Wong, A., et al.: A 1V 5mA multimode IEEE 802.15.6/Bluetooth Low-Energy WBAN transceiver for biotelemetry applications. In: IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 300–301, Feb 2012Google Scholar
  2. 2.
    Liu, Y.-H., et al.: A 1.9nj/b 2.4GHz multistandard (Bluetooth Low Energy/Zigbee/IEEE802.15.6) transceiver for personal/body-area networks. In: IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 446–447, Feb 2013Google Scholar
  3. 3.
    Devita, G., et al.: A 5mW multi-standard Bluetooth LE/IEEE 802.15.6 SoC for WBAN applications. In: IEEE European Solid State Circuits Conference, pp. 283–286, Sept 2014Google Scholar
  4. 4.
    Sano, T., et al.: A 6.3mW BLE transceiver embedded RX image-rejection filter and TX harmonic-suppression filter reusing on-chip matching network. In: IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 240–241, Feb 2015Google Scholar
  5. 5.
    Liu, Y.-H., et al.: A 3.7mW-RX 4.4mW-TX fully integrated Bluetooth Low-Energy/IEEE802.15.4/proprietary SoC with an ADPLL-based fast frequency offset compensation in 40 nm CMOS. In: IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 236–237, Feb 2015Google Scholar
  6. 6.
    Bachmann, C., et al.: A 3.5mW 315/400MHz IEEE802.15.6/proprietary mode digitally-tunable radio SoC with integrated digital baseband and MAC processor in 40 nm CMOS. In: IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 94–95, June 2015Google Scholar
  7. 7.
    Prummel, J., et al.: A 10 mW Bluetooth Low-Energy transceiver with on-chip matching. IEEE J. Solid-State Circuits 50(12), 3077–3088 (2015)CrossRefGoogle Scholar
  8. 8.
    Kuo, F.-W., et al.: A Bluetooth Low-Energy (BLE) transceiver with TX/RX switchable on-chip matching network, 2.75 mW high-IF discrete-time receiver, and 3.6 mW all-digital transmitter. In: Proceedings of IEEE Symposium on VLSI Circuits, pp. 64–65, June 2016Google Scholar
  9. 9.
    Kuo, F.-W., et al.: A Bluetooth Low-Energy (BLE) transceiver with 3.7mW all-digital transmitter, 2.75mW high-IF discrete-time receiver, and TX/RX switchable on-chip matching network. IEEE J. Solid-State Circuits 52(4), 1144–1162 (2017)Google Scholar
  10. 10.
    Masuch, J., et al.: A 1.1-mW-RX 81.4 dBm sensitivity CMOS transceiver for Bluetooth Low Energy. IEEE Trans. Microw. Theory Tech. 61(4), 1660–1673 (2013)Google Scholar
  11. 11.
    Bluetooth specification version 4.2, in Available: http://www.bluetooth.com (2014)
  12. 12.
    Kuo, F.-W., et al.: A fully integrated 28 nm Bluetooth Low-Energy transmitter with 36% system efficiency at 3 dBm. In: IEEE European Solid State Circuits Conference, pp. 356–359, Sept 2015Google Scholar
  13. 13.
    Babaie, M., et al.: A fully integrated bluetooth low-energy transmitter in 28-nm CMOS with 36% system efficiency at 3 dBm. IEEE J. Solid-State Circuits 51(7), 1547–1565 (2016)CrossRefGoogle Scholar
  14. 14.
    Babaie, M., Shahmohammadi, M., Staszewski, R.B.: A 0.5 V 0.5 mW switching current source oscillator. In: IEEE RFIC Symposium, pp. 183–186, May 2015Google Scholar
  15. 15.
    Babaie, M., Staszewski, R.B., Galatro, L., Spirito, M.: A wideband 60 GHz class-E/F2 power amplifier in 40 nm CMOS. In: IEEE RFIC Symposium, pp. 215–218, May 2015Google Scholar
  16. 16.
    Tohidian, M., Madadi, I., Staszewski, R.B.: A fully integrated discrete-time superheterodyne receiver. IEEE Trans Very Large Scale Integr. (VLSI) Syst. 25(2), 635–647 (2017)Google Scholar
  17. 17.
    Madadi, I., Tohidian, M., Staszewski, R.B.: A high IIP2 saw-less superheterodyne receiver with multistage harmonic rejection. IEEE J. Solid-State Circuits 51(2), 332–347 (2016)CrossRefGoogle Scholar
  18. 18.
    Babaie, M., Staszewski, R.B.: An ultra-low phase noise class-F2 CMOS oscillator with 191 dBc/Hz FoM and long-term reliability. IEEE J. Solid-State Circuits 50(3), 679–692 (2015)CrossRefGoogle Scholar
  19. 19.
    F.-W. Kuo, et al.: A 12mW all-digital PLL based on class-F DCO for 4G phones in 28 nm CMOS. In: Proceedings of IEEE Symposium on VLSI Circuits, pp. 1–2, June 2014Google Scholar
  20. 20.
    Staszewski, R.B., et al.: All-digital PLL and transmitter for mobile phones. IEEE J. Solid-State Circuits 40(12), 2469–2482 (2005)CrossRefGoogle Scholar
  21. 21.
    Aoki, I., Kee, S.D., Rutledge, D.B., Hajimiri, A.: Distributed active transformer–a new power-combining and impedance-transformation technique. IEEE Trans. Microw. Theory Tech. 50(1), 316–331 (2002)CrossRefGoogle Scholar
  22. 22.
    Kim, J., et al.: A fully-integrated high-power linear CMOS power amplifier with a parallel-series combining transformer. IEEE J. Solid-State Circuits 47(3), 599–614 (2012)CrossRefGoogle Scholar
  23. 23.
    Babaie, M., Staszewski, R.B.: A study of RF oscillator reliability in nanoscale CMOS. In: Proceedings of IEEE 21st European Conference on Circuit Theory and Design, pp. 243–246, Sept 2013Google Scholar
  24. 24.
    Chen, J., et al.: A digitally modulated mm-Wave Cartesian beamforming transmitter with quadrature spatial combining. In: IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 232–233, Feb 2013Google Scholar
  25. 25.
    Kee, S., Aoki, I., Hajimiri, A., Rutledge, D.: The class-E/F family of switching amplifiers. IEEE Trans. Microw. Theory Tech. 51(6), 1677–1690 (2003)CrossRefGoogle Scholar
  26. 26.
    Selvakumar, A., Zargham, M., Liscidini, A.: Sub-mW current re-use receiver front-end for wireless sensor network applications. IEEE J. Solid-State Circuits 50(12), 2965–2974 (2015)CrossRefGoogle Scholar
  27. 27.
    Mirzaei, A., Darabi, H., Leete, J.C., Chang, Y.: Analysis and optimization of direct-conversion receivers with 25% duty-cycle current-driven passive mixers. IEEE Trans. Circuits Syst. I: Regul 57(9), 2353–2366 (2010)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Staszewski, R.B., et al.: All-digital TX frequency synthesizer and discrete-time receiver for Bluetooth radio in 130-nm CMOS. IEEE J. Solid-State Circuits 39(12), 2278–2291 (2004)CrossRefGoogle Scholar
  29. 29.
    Karvonen, S., Riley, T.A.D., Kurtti, S., Kostamovaara, J.: A quadrature charge-domain sampler with embedded FIR and IIR filtering functions. IEEE J. Solid-State Circuits 41(2), 507–515 (2006)CrossRefGoogle Scholar
  30. 30.
    Bagheri, R., et al.: An 800 MHz to 6 GHz software-defined wireless receiver in 90 nm CMOS. IEEE J. Solid-State Circuits 41(12), 2860–2876 (2006)CrossRefGoogle Scholar
  31. 31.
    Ferreira, S.B., Kuo, F.-W., Babaie, M., Bampi, S., Staszewski, R.B.: System design of a 2.75 mW discrete-time superheterodyne receiver for Bluetooth Low Energy. Submitted for review to a special issue in IEEE Trans. Microw. Theory Tech. 65(5), 1904–1913 (2017)Google Scholar
  32. 32.
    Shahmohammadi, M., Babaie, M., Staszewski, R.B.: A 1/f noise upconversion reduction technique applied to class-D and class-F oscillators. In: IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 444–445, Feb 2015Google Scholar
  33. 33.
    Shahmohammadi, M., Babaie, M., Staszewski, R.B.: A 1/f noise upconversion reduction technique for voltage-biased RF CMOS oscillators. IEEE J. Solid-State Circuits 51(11), 2610–2624 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Masoud Babaie
    • 1
  • Sandro Binsfeld Ferreira
    • 2
  • Feng-Wei Kuo
    • 3
  • Robert Bogdan Staszewski
    • 1
    • 4
  1. 1.Delft University of TechnologyDelftThe Netherlands
  2. 2.Federal University of Rio Grande Do Sul (UFRGS)Porto AlegreBrazil
  3. 3.Taiwan Semiconductor Manufacturing Company (TSMC)HsinchuTaiwan
  4. 4.University College Dublin (UCD)DublinIreland

Personalised recommendations