Skip to main content

Neural and Physiological Measures to Classify User’s Intention and Control Exoskeletons for Rehabilitation or Assistance: The Experience @NearLab

  • Conference paper
  • First Online:
Advances in Service and Industrial Robotics (RAAD 2017)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 49))

Included in the following conference series:

Abstract

Robotic systems to restore, augment and support human capabilities hinder the natural interaction with the world. Different approaches based on physiological measurements such as brain activity, muscle contraction, kinematics, or eye movement, can be exploited to automatically and reliably detect the intention of the user to perform a movement. Once the intention of the user is detected or classified, it can trigger or control an exoskeleton supporting the target gesture. All these features together provide a personalized communication between the robot and the user making human-robot interaction natural and seamless. Thus, the acceptability and usability of the system is maximized. Several integrated robotic actuators driven by user’s intention are here described to demonstrate the potentiality of these technologies both for rehabilitation and assistance purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Van der Loos HFM, Reinkensmeyer DJ (2008) Rehabilitation and healthcare robotics. In: Siciliano B, Khatib O (eds) Springer handbook of robotics, vol 53, pp 1223–1251. Springer, Heidelberg

    Google Scholar 

  2. Krebs HI, Hogan N, Aisen ML, Volpe BT (1998) Robot aided neurorehabilitation. IEEE Trans Rehabil Eng 6:75–87

    Article  Google Scholar 

  3. Hocoma. https://www.hocoma.com/world/en/products/armeo/

  4. Hesse S, Uhlenbrock D (2000) A mechanized gait trainer for restoration of gait. J Rehab Res Dev 37:701–708

    Google Scholar 

  5. Colombo G, Joerg M, Schreier R, Dietz V (2000) Treadmill training of paraplegic patients with a robotic orthosis. J Rehab Res Dev 37:693–700

    Google Scholar 

  6. HealthSouth (2007). http://www.autoambulator.com

  7. Gelin R, Lesigne B, Busnel M, Michel JP (2001) The first moves of the AFMASTER workstation. Adv Robot 14:639–649

    Article  Google Scholar 

  8. Kwee HH (2000) Integrated control of MANUS manipulator and wheelchair enhanced by environmental docking. Robotica 16:491–498

    Article  Google Scholar 

  9. Engelberger JF (1993) Health-care robotics goes commercial: the HelpMate experience. Robotica 11:517–524

    Article  Google Scholar 

  10. Dario P, Laschi C, Guglielmelli E (1999) Design and experiments on a personal robotic assistant. Adv Robot 13:153–169

    Article  Google Scholar 

  11. Graf B, Hans M, Schraft RD (2004) Care-O-bot II – development of a next generation robotic home assistant. Auton Robot 16:193–205

    Article  Google Scholar 

  12. Pedrocchi A, Ferrante S, Ambrosini E, Gandolla M, Casellato C, Schauer T, Klauer C, Pascual J, Vidaurre C, Gföhler M, Reichenfelser W, Karner J, Micera S, Crema A, Molteni F, Rossini M, Palumbo G, Guanziroli E, Jedlitschka A, Hack M, Bulgheroni M, d’Amico E, Schenk P, Zwicker S, Duschau-Wicke A, Miseikis J, Graber L, Ferrigno G (2013) MUNDUS project: MUltimodal neuroprosthesis for daily upper limb support. J Neuroeng Rehabil 3(10):66. doi:10.1186/1743-0003-10-66

    Article  Google Scholar 

  13. Lobo-Prat J, Kooren PN, Stienen AHA, Herder JL, Koopman BFJM, Veltink PH (2014) Non-invasive control interfaces for intention detection in active movement-assistive devices. J Neuroeng Rehabil 11:168

    Article  Google Scholar 

  14. Ison M, Artemiadis P (2014) The role of muscle synergies in myoelectric control: trends and challenges for simultaneous multifunction control. J Neural Eng 11:051001

    Article  Google Scholar 

  15. Ambrosini E, Ferrante S, Rossini M, Molteni F, Gföhler M, Reichenfelser W, Duschau-Wicke A, Ferrigno G, Pedrocchi A (2014) Functional and usability assessment of a robotic exoskeleton arm to support activities of daily life. Robotica 32(8):1213–1224

    Article  Google Scholar 

  16. Driessen BJ, Evers HG, van Woerden JA (2001) MANUS–a wheelchair-mounted rehabilitation robot. Proc Inst Mech Eng H 215:285–290

    Article  Google Scholar 

  17. Bien Z, Kim D-J, Chung M-J, Kwon D-S, Chang P-H (2003) Development of a wheelchair-based rehabilitation robotic system (KARES II) with various human-robot interaction interfaces for the disabled. In: IEEE/ASME international conference on advanced intelligent mechatronics AIM 2003, vol 2, pp 902–907 (2003)

    Google Scholar 

  18. Ambrosini E, Ferrante S, Schauer T, Klauer C, Gaffuri M, Ferrigno G, Pedrocchi A (2014) A myocontrolled neuroprosthesis integrated with a passive exoskeleton to support upper limb activities. J Electromyogr Kinesiol 24(2):307–317

    Article  Google Scholar 

  19. Klauer C, Schauer T, Reichenfelser W, Karner J, Zwicker S, Gandolla M, Ambrosini E, Ferrante S, Hack M, Jedlitschka A, Duschau-Wicke A, Gfohler M, Pedrocchi A (2014) Feedback control of arm movements using Neuro-muscular Electrical Stimulation (NMES) combined with a lockable, passive exoskeleton for gravity compensation. Front Neurosci 2(8):262

    Google Scholar 

  20. Russo D, Ambrosini E, Arrigoni S, Braghin F, Pedrocchi A (2016) Design and modelling of a joystick control scheme for an upper limb powered exoskeleton. In: Kyriacou E, Christofides S, Pattichis CS (eds) XIV mediterranean conference on medical and biological engineering and computing, pp 649–652. Springer (2016)

    Google Scholar 

  21. Kwakkel G, Kollen BJ, Van der Grond J, Prevo AJ (2003) Probability of regaining dexterity in the flaccid upper limb: impact of severity of paresis and time since onset in acute stroke. Stroke 34(9):2181–2186

    Article  Google Scholar 

  22. Pollock A, Farmer SE, Brady MC, Langhorne P, Mead GE, Mehrholz J, van Wijck F (2014) Interventions for improving upper limb function after stroke. Cochrane Database Syst Rev 12(11):CD010820

    Google Scholar 

  23. Winstein CJ, Stein J, Arena R, Bates B, Cherney LR et al (2016) Guidelines for adult stroke rehabilitation and recovery. Stroke 47:e98–e169

    Article  Google Scholar 

  24. Resquín F, Cuesta Gómez A, Gonzalez-Vargas J, Brunetti F, Torricelli D, Molina Rueda F, Cano de la Cuerda R, Miangolarra JC, Pons JL (2016) Hybrid robotic systems for upper limb rehabilitation after stroke: a review. Med Eng Phys 38(11):1279–1288

    Article  Google Scholar 

  25. Bulgheroni M, d’Amico E, De Vita I, Ambrosini E, Ferrante S, Schauer T, Gfoehler M, Zajc J, Russold M, Weber M, Micera S, Krakow K, Rossini M, Gasperini G, Pedrocchi A (2016) Reaching and grasping training based on robotic hybrid assistance for neurological patients. In: 1st IASTED international conference on intelligent systems and robotics (ISAR 2016), 6–8 October 2016

    Google Scholar 

  26. Valtin M, Kociemba K, Behling C, Kuberski B, Becker S, Schauer T (2016) RehaMovePro: A versatile mobile stimulation system for transcutaneous FES applications. Eur J Transl Myology 26(3):6076

    Article  Google Scholar 

  27. Barsi GI, Popovic DB, Tarkka IM, Sinkjer T, Grey MJ (2008) Cortical excitability changes following grasping exercise augmented with electrical stimulation. Exp Brain Res 191(1):57–66

    Article  Google Scholar 

  28. Gandolla M, Ferrante S, Molteni F, Guanziroli E, Frattini T, Martegani A, Ferrigno G, Friston K, Pedrocchi A, Ward NS (2014) Re-thinking the role of motor cortex: context- sensitive motor outputs? Neuroimage 91(100):366–374

    Article  Google Scholar 

  29. Gandolla M, Ward NS, Molteni F, Guanziroli E, Ferrigno G, Pedrocchi A (2016) The neural correlates of long-term carryover following functional electrical stimulation for stroke. Neural Plast (2016). doi:10.1155/2016/4192718

  30. Tacchino G, Gandolla M, Coelli S, Barbieri R, Pedrocchi A, Bianchi AM (2016) EEG analysis during active and assisted repetitive movements: evidence for differences in neural engagement. IEEE Trans Neural Syst Rehabil Eng, August 2016. epub

    Google Scholar 

  31. Gandolla M, Molteni F, Ward NS, Guanziroli E, Ferrigno G, Pedrocchi A (2015) Validation of a quantitative single-subject based evaluation for rehabilitation-induced improvement assessment. Ann Biomed Eng 43(11):2686–2698

    Article  Google Scholar 

  32. Gandolla M, Ferrante S, Baldassini D, Cottini MC, Seneci C, Pedrocchi A (2016) EMG-controlled robotic hand rehabilitation device for domestic training. In: Kyriacou E, Christofides S, Pattichis CS (eds) XIV mediterranean conference on medical and biological engineering and computing 2016. Springer, pp. 638–642 (2016)

    Google Scholar 

  33. Gandolla M, Ferrante S, Ferrigno G, Baldassini D, Molteni F, Guanziroli E, Cotti Cottini M, Seneci C, Pedrocchi A (2016) Artificial neural network EMG classifier for functional hand grasp movements prediction. J Int Med Res, September 2016. pii: 0300060516656689

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona Ferrante .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Ferrante, S., Ambrosini, E., Casellato, C., Gandolla, M., Pedrocchi, A., Ferrigno, G. (2018). Neural and Physiological Measures to Classify User’s Intention and Control Exoskeletons for Rehabilitation or Assistance: The Experience @NearLab. In: Ferraresi, C., Quaglia, G. (eds) Advances in Service and Industrial Robotics. RAAD 2017. Mechanisms and Machine Science, vol 49. Springer, Cham. https://doi.org/10.1007/978-3-319-61276-8_78

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61276-8_78

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61275-1

  • Online ISBN: 978-3-319-61276-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics