Skip to main content

Application of an Inspection Robot Composed by Collaborative Terrestrial and Aerial Modules for an Operation in Agriculture

  • Conference paper
  • First Online:
Advances in Service and Industrial Robotics (RAAD 2017)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 49))

Included in the following conference series:

Abstract

FREEDOM robot has been developed for exploring dangerous or inaccessible sites by human operators, either from the ground and/or from the air, in urban environment, due to planned or emergency response events. The system, composed by ground and aerial modules, it is based on the design concept of taking advantage of both systems sharing design philosophy and management. One of the main design issue is the possibility of extending the inspection capability by providing power supply from the ground module to the flying module. In this contribution, system basic features and the application to agriculture are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wettergreen D, Moreland S, Skonieczny K (2010) Design and field experimentation of a prototype lunar prospector. Int J Robot Res 29(12):1550–1564

    Google Scholar 

  2. Sandin PE (2003) Robot mechanisms and mechanical devices illustrated. McGraw-Hill, New York

    Google Scholar 

  3. Pignaton de Freitas E et al (2010) Decentralized task distribution among cooperative UAVs in surveillance systems applications. In: 2010 seventh international conference on wireless on-demand network systems and services (WONS). IEEE

    Google Scholar 

  4. Li W, Zhang TG, Kuhnlenz K (2011) A vision-guided autonomous quadrotor in an air-ground multi-robot system. In: Proceedings of IEEE international conference on robotics and automation (ICRA), Shanghai, pp 2980–2985

    Google Scholar 

  5. Siegwart R, Nourbakhsh IR (2004) Introduction to autonomous mobile robots. MIT Press, Cambridge

    Google Scholar 

  6. Gonzalez Rodriguez A, Gonzalez Rodriguez A, Rea P (2011) A new articulated leg for mobile robots. J. Ind Robot 38(5):521–532

    Google Scholar 

  7. Ottaviano E, Rea P (2013) Design and operation of a 2-DOF leg–wheel hybrid robot. J Robotica 31(8):1319–1325. ISSN 0263-5747, doi:10.1017/S0263574713000556

  8. Ottaviano E, Vorotnikov S, Ceccarelli M, Kurenev P (2011) Design improvements and control of a Hhybrid walking robot. Robot Auton Syst 59(2):128–141

    Google Scholar 

  9. JPL Mars Pathfinder article, jpl.nasa.gov. http://www.jpl.nasa.gov/news/fact_sheets/mpf.pdf

  10. Nagatani K, Kiribayashi S et al (2013) Emergency response to the nuclear accident at the Fukushima Daiichi Nuclear Power Plants using mobile rescue robots. J Field Robot 30:44–63. doi:10.1002/rob.21439

  11. Pelliccio A, Ottaviano E, Rea P (2015) Digital and mechatronic technologies applied to the survey of brownfields. In: Brusaporci S (ed.) Handbook of research on emerging digital tools for architectural surveying, modeling, and representation. IGI Global, chap 27, pp 813–829. ISBN 978-146668380-8, doi:10.4018/978-1-4666-8379-2.ch027

  12. Lacroix S, Besnerais G (2011) Issues in cooperative air/ground robotic systems. In: Kaneko M, Nakamura Y (eds) Robotics research. Tracts in advanced robotics. Springer, Heidelberg, vol 66, pp 421–432

    Google Scholar 

  13. Ferro C, Grassi R, Seclì C, Maggiore P (2015) Additive manufacturing offers new opportunities in UAV research. In: 48th CIRP conference on manufacturing systems - CIRP CMS

    Google Scholar 

  14. Yan Z, Jouandeau N, Ali Cherif A (2013) A survey and analysis of multi-robot coordination. Int J Adv Robot Syst 10(12):399

    Google Scholar 

  15. Cao YU, Fukunaga AS, Kahng A (1997) Cooperative mobile robotics: antecedents and directions. Auton Robots 4(1):7–27

    Google Scholar 

  16. Chouaib Harik EH, Guérin F, Guinand F, Brethé JF, Pelvillain H (2015) UAV-UGV cooperation for objects transportation in an industrial area. In: 2015 IEEE international conference on industrial technology (ICIT). doi:10.1109/ICIT.2015.7125156

  17. Freeman PK, Freeland RS (2015) Agricultural UAVs in the US: potential policy and hype. Rem Sens Appl Soc Environ 2:35–43. doi:10.1016/j.rsase.2015.10.002

  18. Pobkrut T, Eamsaard T, Kerdcharoen T (2016) Sensor drone for aerial odor mapping for agriculture and security services. In: 13th international conference on electrical engineering/electronics, computer, telecommunications and information technology (ECTI-CON), pp 1–5. doi:10.1109/ECTICon.2016.7561340

  19. Tripicchio P, Satler M, Dabisias G, Ruffaldi E, Avizzano CA (2015) Towards smart farming and sustainable agriculture with drones. In: 2015 international conference on intelligent environments on intelligent environments (IE), pp 140–143. doi:10.1109/IE.2015.29

  20. Patel P (2016) Agriculture drones are finally cleared for take-off. IEEE Spectr 53(11):13–14. doi:10.1109/MSPEC.2016.7607013

  21. Pederi YA, Cheporniuk HS (2015) Unmanned aerial vehicles and new technological methods of monitoring and crop protection in precision agriculture. In: 2015 IEEE international conference on actual problems of unmanned aerial vehicles developments (APUAVD), pp 298–301. doi:10.1109/APUAVD.2015.7346625

  22. Matolak DW (2015) Unmanned aerial vehicles: communications challenges and future aerial networking. In: 2015 international conference on computing, networking and communications, pp 567–572. doi:10.1109/ICCNC.2015.7069407

  23. Murrieta-Rico FN, Hernandez-Balbuena D et al (2016) Resolution improvement of accelerometers measurement for drones in agricultural applications. In: 42nd annual conference of the IEEE industrial electronics society, IECON 2016, pp 1037–1042. doi:10.1109/IECON.2016.7793466

  24. Abutalipov RN, Bolgov YV, Senov HM (2016) Flowering plants pollination robotic system for greenhouses by means of nanocopter (drone aircraft). In: IEEE conference on quality management, transport and information security, information technologies (IT&MQ&IS), pp 7–9. doi:10.1109/ITMQIS.2016.7751907

  25. Borgogno-Mondino E, Lessio A, Gomarasca MA (2016) A fast operative method for NDVI uncertainty estimation and its role in vegetation analysis. Eur J Rem Sens 49:137–156. doi:10.5721/EuJRS20164908

  26. Honkavaara E, Saari H et al (2013) Processing and assessment of spectrometric, stereoscopic imagery collected using a lightweight UAV spectral camera for precision agriculture. Rem Sens 5(10):5006–5039. doi:10.3390/rs5105006

  27. Ottaviano E, Rea P, Castelli G (2014) THROO: a Tracked Hybrid Rover to Overpass Obstacles. Adv Robot 28(10):683–694. doi:10.1080/01691864.2014.891949

  28. Ottaviano E, Ceccarelli M, Palmucci F (2010) An application of CaTraSys, a cable-based parallel measuring system for an experimental characterization of human walking. Robotica 28(1):119–133

    Google Scholar 

  29. Chao K-M, James AE, Nanos AG, Chen J-H, Stan S-D, Muntean I, Figliolini G, Rea P, Bouzgarrou CB, Vitliemov P, Cooper J, Van Capelle J (2015) Cloud e-learning for mechatronics: CLEM. Future Gener Comput Syst 48:46–59

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Maggiore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Grassi, R., Rea, P., Ottaviano, E., Maggiore, P. (2018). Application of an Inspection Robot Composed by Collaborative Terrestrial and Aerial Modules for an Operation in Agriculture. In: Ferraresi, C., Quaglia, G. (eds) Advances in Service and Industrial Robotics. RAAD 2017. Mechanisms and Machine Science, vol 49. Springer, Cham. https://doi.org/10.1007/978-3-319-61276-8_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61276-8_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61275-1

  • Online ISBN: 978-3-319-61276-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics