Advertisement

Division Property: Efficient Method to Estimate Upper Bound of Algebraic Degree

  • Yosuke Todo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10311)

Abstract

We proposed the division property, which is a new method to find integral characteristics, at EUROCRYPT2015. Then, we applied this technique to analyze the full MISTY1 at CRYPTO2015. After the proposal of the two papers, many follow-up results have been researched at major conferences. In this paper, we first expound the integral and higher-order differential cryptanalyses in detail and focus the similarities and differences. As a result, we conclude that both cryptanalyses are the same in practical. Nevertheless, both cryptanalyses use the different method to find characteristics: the propagation characteristic of integral properties is evaluated in the integral cryptanalysis and the upper bound of the algebraic degree is evaluated in the higher-order differential cryptanalysis. Our first discovery is that each of the two methods has its own advantages and disadvantages. Moreover, there are some experimental characteristics that cannot be proven by either of both methods. These observation causes significant motivation that we developed the division property. We next expound some important follow-up results, e.g., the bit-based division property at FSE2016, the parity set at CRYPTO2016, the MILP-based propagation search at ASIACRYPT2016.

Keywords

Division property Integral cryptanalysis Higher-order differential cryptanalysis 

References

  1. 1.
    Data Encryption Standard (DES). National Bureau of Standards (1977). Federal Information Processing Standards Publication 46Google Scholar
  2. 2.
    Bar-On, A., Keller, N.: A \(2^{70}\) attack on the full MISTY1. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 435–456. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-53018-4_16 CrossRefGoogle Scholar
  3. 3.
    Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The SIMON and SPECK families of lightweight block ciphers (2013). http://eprint.iacr.org/2013/404
  4. 4.
    Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency variant MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 123–153. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-53008-5_5 CrossRefGoogle Scholar
  5. 5.
    Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of skipjack reduced to 31 rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 12–23. Springer, Heidelberg (1999). doi: 10.1007/3-540-48910-X_2 CrossRefGoogle Scholar
  6. 6.
    Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21. Springer, Heidelberg (1991). doi: 10.1007/3-540-38424-3_1 CrossRefGoogle Scholar
  7. 7.
    Biryukov, A., Shamir, A.: Structural cryptanalysis of SASAS. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 395–405. Springer, Heidelberg (2001). doi: 10.1007/3-540-44987-6_24 CrossRefGoogle Scholar
  8. 8.
    Boura, C., Canteaut, A.: Another view of the division property. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 654–682. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-53018-4_24 CrossRefGoogle Scholar
  9. 9.
    Boura, C., Canteaut, A., Cannière, C.: Higher-order differential properties of Keccak and Luffa. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 252–269. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-21702-9_15 CrossRefGoogle Scholar
  10. 10.
    Cannière, C.D., Sato, H., Watanabe, D.: Hash function Luffa - a SHA-3 candidate (2008). http://hitachi.com/rd/yrl/crypto/luffa/round1archive/Luffa_Specification.pdf
  11. 11.
    Canteaut, A., Videau, M.: Degree of composition of highly nonlinear functions and applications to higher order differential cryptanalysis. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 518–533. Springer, Heidelberg (2002). doi: 10.1007/3-540-46035-7_34 CrossRefGoogle Scholar
  12. 12.
    Daemen, J., Bertoni, G., Peeters, M., Assche, G.V.: The Keccak reference version 3.0 (2011)Google Scholar
  13. 13.
    Daemen, J., Knudsen, L., Rijmen, V.: The block cipher Square. In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997). doi: 10.1007/BFb0052343 CrossRefGoogle Scholar
  14. 14.
    Demirci, H.: Square-like attacks on reduced rounds of IDEA. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS, vol. 2595, pp. 147–159. Springer, Heidelberg (2003). doi: 10.1007/3-540-36492-7_11 CrossRefGoogle Scholar
  15. 15.
    Demirci, H., Selçuk, A.A.: A meet-in-the-middle attack on 8-round AES. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 116–126. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-71039-4_7 CrossRefGoogle Scholar
  16. 16.
    Dinu, D., Perrin, L., Udovenko, A., Velichkov, V., Groschdl, J., Biryukov, A.: Design strategies for ARX with provable bounds: SPARX and LAX (full version) (2016). http://eprint.iacr.org/2016/984, (Accepted to ASIACRYPT 2016)
  17. 17.
    Gilbert, H., Minier, M.: A collision attack on 7 rounds of Rijndael. In: AES Candidate Conference, pp. 230–241 (2000)Google Scholar
  18. 18.
    He, Y., Qing, S.: Square attack on reduced camellia cipher. In: Qing, S., Okamoto, T., Zhou, J. (eds.) ICICS 2001. LNCS, vol. 2229, pp. 238–245. Springer, Heidelberg (2001). doi: 10.1007/3-540-45600-7_27 CrossRefGoogle Scholar
  19. 19.
    Journault, A., Standaert, F.X., Varici, K.: Improving the security and efficiency of block ciphers based on LS-designs. Des. Codes Crypt. 82, 1–15 (2016). http://dx.doi.org/10.1007/s10623-016-0193-8 MathSciNetzbMATHGoogle Scholar
  20. 20.
    Knudsen, L.: DEAL - a 128-bit block cipher. Technical report no. 151. Department of Informatics, University of Bergen, Norway, February 1998Google Scholar
  21. 21.
    Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995). doi: 10.1007/3-540-60590-8_16 CrossRefGoogle Scholar
  22. 22.
    Knudsen, L.R., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002). doi: 10.1007/3-540-45661-9_9 CrossRefGoogle Scholar
  23. 23.
    Lai, X.: Higher order derivatives and differential cryptanalysis. In: Blahut, R.E., Costello Jr., D.J., Maurer, U., Mittelholzer, T. (eds.) Communications and Cryptography. The Springer International Series in Engineering and Computer Science, vol. 276, pp. 227–233. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  24. 24.
    Li, Y., Wu, W., Zhang, L.: Improved integral attacks on reduced-round CLEFIA block cipher. In: Jung, S., Yung, M. (eds.) WISA 2011. LNCS, vol. 7115, pp. 28–39. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-27890-7_3 CrossRefGoogle Scholar
  25. 25.
    Lucks, S.: The saturation attack - a bait for twofish. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 1–15. Springer, Heidelberg (2002). doi: 10.1007/3-540-45473-X_1 CrossRefGoogle Scholar
  26. 26.
    Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis using mixed-integer linear programming. In: Wu, C.-K., Yung, M., Lin, D. (eds.) Inscrypt 2011. LNCS, vol. 7537, pp. 57–76. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-34704-7_5 CrossRefGoogle Scholar
  27. 27.
    Sasaki, Y., Todo, Y.: New differential bounds and division property of lilliput: block cipher with extended generalized Feistel network. In: SAC (2016, in press)Google Scholar
  28. 28.
    Shibayama, N., Kaneko, T.: A peculiar higher order differential of CLEFIA. In: ISITA, pp. 526–530. IEEE (2012)Google Scholar
  29. 29.
    Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security evaluation and (related-key) differential characteristic search: application to SIMON, PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 158–178. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-45611-8_9 Google Scholar
  30. 30.
    Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: TWINE: a lightweight block cipher for multiple platforms. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 339–354. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-35999-6_22 CrossRefGoogle Scholar
  31. 31.
    Tanaka, H., Hisamatsu, K., Kaneko, T.: Strength of ISTY1 without FL function for higher order differential attack. In: Fossorier, M., Imai, H., Lin, S., Poli, A. (eds.) AAECC 1999. LNCS, vol. 1719, pp. 221–230. Springer, Heidelberg (1999). doi: 10.1007/3-540-46796-3_22 CrossRefGoogle Scholar
  32. 32.
    Todo, Y.: Integral cryptanalysis on full MISTY1. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 413–432. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-47989-6_20 CrossRefGoogle Scholar
  33. 33.
    Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 287–314. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46800-5_12 Google Scholar
  34. 34.
    Todo, Y., Morii, M.: Bit-based division property and application to Simon family. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 357–377. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-52993-5_18 CrossRefGoogle Scholar
  35. 35.
    Todo, Y., Morii, M.: Compact representation for division property. In: Foresti, S., Persiano, G. (eds.) CANS 2016. LNCS, vol. 10052, pp. 19–35. Springer, Cham (2016). doi: 10.1007/978-3-319-48965-0_2 CrossRefGoogle Scholar
  36. 36.
    Wang, Q., Liu, Z., Varıcı, K., Sasaki, Y., Rijmen, V., Todo, Y.: Cryptanalysis of reduced-round SIMON32 and SIMON48. In: Meier, W., Mukhopadhyay, D. (eds.) INDOCRYPT 2014. LNCS, vol. 8885, pp. 143–160. Springer, Cham (2014). doi: 10.1007/978-3-319-13039-2_9 Google Scholar
  37. 37.
    Wu, W., Zhang, L.: LBlock: a lightweight block cipher. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-21554-4_19 CrossRefGoogle Scholar
  38. 38.
    Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP method to searching integral distinguishers based on division property for 6 lightweight block ciphers (2016). https://eprint.iacr.org/2016/857, (Accepted to ASIACRYPT 2016)
  39. 39.
    Yeom, Y., Park, S., Kim, I.: On the security of CAMELLIA against the square attack. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 89–99. Springer, Heidelberg (2002). doi: 10.1007/3-540-45661-9_7 CrossRefGoogle Scholar
  40. 40.
    Z’aba, M.R., Raddum, H., Henricksen, M., Dawson, E.: Bit-pattern based integral attack. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 363–381. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-71039-4_23 CrossRefGoogle Scholar
  41. 41.
    Zhang, H., Wu, W.: Structural evaluation for generalized feistel structures and applications to LBlock and TWINE. In: Biryukov, A., Goyal, V. (eds.) INDOCRYPT 2015. LNCS, vol. 9462, pp. 218–237. Springer, Cham (2015). doi: 10.1007/978-3-319-26617-6_12 CrossRefGoogle Scholar
  42. 42.
    Zheng, Y., Matsumoto, T., Imai, H.: On the construction of block ciphers provably secure and not relying on any unproved hypotheses. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 461–480. Springer, New York (1990). doi: 10.1007/0-387-34805-0_42 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.NTT Secure Platform LaboratoriesTokyoJapan
  2. 2.Kobe UniversityKobeJapan

Personalised recommendations