Advertisement

Updatable Functional Encryption

  • Afonso Arriaga
  • Vincenzo Iovino
  • Qiang Tang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10311)

Abstract

Functional encryption (FE) allows an authority to issue tokens associated with various functions, allowing the holder of some token for function f to learn only \(f(\mathsf {D})\) from a ciphertext that encrypts \(\mathsf {D}\). The standard approach is to model f as a circuit, which yields inefficient evaluations over large inputs. Here, we propose a new primitive that we call updatable functional encryption (UFE), where instead of circuits we deal with RAM programs, which are closer to how programs are expressed in von Neumann architecture. We impose strict efficiency constrains in that the run-time of a token \(\mathsf {\overline{P}}\) on ciphertext \(\mathsf {CT}\) is proportional to the run-time of its clear-form counterpart (program \(\mathsf {P}\) on memory \(\mathsf {D}\)) up to a polylogarithmic factor in the size of \(\mathsf {D}\), and we envision tokens that are capable to update the ciphertext, over which other tokens can be subsequently executed. We define a security notion for our primitive and propose a candidate construction from obfuscation, which serves as a starting point towards the realization of other schemes and contributes to the study on how to compute RAM programs over public-key encrypted data.

Keywords

Updatable functional encryption RAM model Persistent memory 

Notes

Acknowledgements

The authors would like to thank Karol Zebrowski for his contribution to an earlier version of this work. Afonso Arriaga is supported by the National Research Fund, Luxembourg, under AFR Grant No. 5107187, and by the Doctoral School of Computer Science & Computer Engineering of the University of Luxembourg. Vincenzo Iovino is supported by the National Research Fund, Luxembourg. Qiang Tang is supported by a CORE (junior track) grant from the National Research Fund, Luxembourg.

References

  1. 1.
    Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs obfuscation and applications. IACR Cryptology ePrint Archive, Report 2013/689 (2013)Google Scholar
  2. 2.
    Arriaga, A., Barbosa, M., Farshim, P.: Private functional encryption: indistinguishability-based definitions and constructions from obfuscation. In: Dunkelman, O., Sanadhya, S.K. (eds.) INDOCRYPT 2016. LNCS, vol. 10095, pp. 227–247. Springer, Cham (2016). doi: 10.1007/978-3-319-49890-4_13 CrossRefGoogle Scholar
  3. 3.
    Ananth, P., Sahai, A.: Functional encryption for turing machines. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 125–153. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49096-9_6 CrossRefGoogle Scholar
  4. 4.
    Bellare, M., Rogaway, P.: The security of triple encryption and a framework for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). doi: 10.1007/11761679_25 CrossRefGoogle Scholar
  5. 5.
    Bitansky, N., Canetti, R.: On strong simulation and composable point obfuscation. J. Cryptol. 27(2), 317–357 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bellare, M., Hoang, V., Rogaway, P.: Foundations of garbled circuits. In: CCS 2012, pp. 784–796. ACM (2012)Google Scholar
  7. 7.
    Bellare, M., Stepanovs, I., Tessaro, S.: Contention in cryptoland: obfuscation, leakage and UCE. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 542–564. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49099-0_20 CrossRefGoogle Scholar
  8. 8.
    Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-19571-6_16 CrossRefGoogle Scholar
  9. 9.
    Canetti, R., Chen, Y., Holmgren, J., Raykova, M.: Succinct adaptive garbled RAM. IACR Cryptology ePrint Archive, Report 2015/1074 (2015)Google Scholar
  10. 10.
    Canetti, R., Holmgren, J.: Fully succinct garbled RAM. In: ITCS 2016, pp. 169–178. ACM (2016)Google Scholar
  11. 11.
    Canetti, R., Holmgren, J., Jain, A., Vaikuntanathan, V.: Indistinguishability obfuscation of iterated circuits and RAM programs. IACR Cryptology ePrint Archive, Report 2014/769 (2014)Google Scholar
  12. 12.
    Canetti, R., Holmgren, J., Jain, A., Vaikuntanathan, V.: Succinct garbling and indistinguishability obfuscation for RAM programs. In: STOC 2015, pp. 429–437. ACM (2015)Google Scholar
  13. 13.
    Desmedt, Y., Iovino, V., Persiano, G., Visconti, I.: Controlled homomorphic encryption: definition and construction. IACR Cryptology ePrint Archive, Report 2014/989 (2014)Google Scholar
  14. 14.
    Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: FOCS 2013, pp. 40–49. IEEE Computer Society (2013)Google Scholar
  15. 15.
    Gentry, C., Halevi, S., Lu, S., Ostrovsky, R., Raykova, M., Wichs, D.: Garbled RAM revisited. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 405–422. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-55220-5_23 CrossRefGoogle Scholar
  16. 16.
    Gentry, C., Halevi, S., Raykova, M., Wichs, D.: Outsourcing private RAM computation. In: FOCS 2014, pp. 404–4013. IEEE Computer Society (2014)Google Scholar
  17. 17.
    Goyal, V., Jain, A., Koppula, V., Sahai, A.: Functional encryption for randomized functionalities. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 325–351. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46497-7_13 CrossRefGoogle Scholar
  18. 18.
    Ishai, Y., Pandey, O., Sahai, A.: Public-coin differing-inputs obfuscation and its applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 668–697. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46497-7_26 CrossRefGoogle Scholar
  19. 19.
    Lu, S., Ostrovsky, R.: How to garble RAM programs? In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 719–734. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38348-9_42 CrossRefGoogle Scholar
  20. 20.
    Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext attacks. In: STOC 1990, pp. 427–437. ACM (1990)Google Scholar
  21. 21.
    O’Neill, A.: Definitional issues in functional encryption. IACR Cryptology ePrint Archive, Report 2010/556 (2010)Google Scholar
  22. 22.
    Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and more. In: STOC 2014, pp. 475–484. ACM (2014)Google Scholar
  23. 23.
    Yao, A.: How to generate and exchange secrets. In: FOCS 1986, pp. 162–167. IEEE Computer Society (1986)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.SnT, University of LuxembourgLuxembourgLuxembourg

Personalised recommendations