Advertisement

Improvements of Attacks on Various Feistel Schemes

  • Emmanuel Volte
  • Valérie Nachef
  • Nicolas Marrière
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10311)

Abstract

In this paper, we use a tool that computes exact values for expectations and standard deviations of random variables involved in generic attacks on various Feistel-type schemes in order to get a better study of these attacks. This leads to the improvement of previous attacks complexities: either we need less messages than expected or we can attack more rounds. These improvements are given for different sizes of the inputs. We also show that for rectangle attacks, there are more differential paths than presented in previous attacks and this strengthens the attacks.

Keywords

Generic attacks on Feistel type schemes Pseudo-random permutations Differential cryptanalysis 

Supplementary material

References

  1. 1.
    Encryption algorithm for computer data protection. Technical report Federal Register 40(52) 12134. National Bureau of Standards, March 1975Google Scholar
  2. 2.
    Notice of a proposed federal information processing data encryption. Technical report Federal Register, vol. 40(149), p. 12607. National Bureau of Standards, August 1975Google Scholar
  3. 3.
    Adams, C., Heys, H., Tavares, S., Wiener, M.: The CAST-256 encryption algorithm. Technical report. AES Submission (1998)Google Scholar
  4. 4.
    Anderson, R., Biham, E.: Two practical and provably secure block ciphers: BEAR and LION. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 113–120. Springer, Heidelberg (1996). doi: 10.1007/3-540-60865-6_48 CrossRefGoogle Scholar
  5. 5.
    Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The SIMON and SPECK families of lightweight block ciphers. Cryptology ePrint Archive: 2013/404: Listing for 2013Google Scholar
  6. 6.
    Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J. Cryptol. 4(1), 3–72 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Burwick, C., Coppersmith, D., D’ Avignon, E., Gennaro, R., Halevi, S., Jutla, C., Matyas Jr., S.M., O’ Connor, L., Peyravian, M., Safford, D., Zunic, N.: MARS - a candidate cipher for AES. Technical report. AES Submission (1998)Google Scholar
  8. 8.
    Daemen, J., Rijmen, V.: The Design of Rijndael. Springer-Verlag, New York (2002)CrossRefzbMATHGoogle Scholar
  9. 9.
    Hoang, V.T., Rogaway, P.: On generalized feistel networks. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 613–630. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-14623-7_33 CrossRefGoogle Scholar
  10. 10.
    Ibrahim, S., Mararof, M.A.: Diffusion analysis of scalable Feistel networks. World Acad. Sci. Eng. Technol. 5, 98–101 (2005)Google Scholar
  11. 11.
    Jutla, C.S.: Generalized birthday attacks on unbalanced Feistel networks. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 186–199. Springer, Heidelberg (1998). doi: 10.1007/BFb0055728 Google Scholar
  12. 12.
    Lu, S.-W.: SMS4 encryption algorithm for wireless networks. Cryptology ePrint Archive: 2008/329: Listing for 2008, Translated from Chinese by Whitfield Diffie and George LedinGoogle Scholar
  13. 13.
    Luby, M., Rackoff, C.: How to construct Pseudorandom permutations from pseudorandom functions. SIAM J. Comput. 17(2), 373–386 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Nachef, V., Patarin, J., Treger, J.: Generic attacks on Misty schemes. In: Abdalla, M., Barreto, P.S.L.M. (eds.) LATINCRYPT 2010. LNCS, vol. 6212, pp. 222–240. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-14712-8_14 CrossRefGoogle Scholar
  15. 15.
    Nachef, V., Volte, E., Patarin, J.: Differential attacks on generalized Feistel schemes. In: Abdalla, M., Nita-Rotaru, C., Dahab, R. (eds.) CANS 2013. LNCS, vol. 8257, pp. 1–19. Springer, Cham (2013). doi: 10.1007/978-3-319-02937-5_1 CrossRefGoogle Scholar
  16. 16.
    Naor, M., Reingold, O.: On the construction of pseudorandom permutations: Luby-Rackoff revisited. J. Cryptol. 12(1), 29–66 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Patarin, J.: Generic attacks on Feistel schemes. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 222–238. Springer, Heidelberg (2001). doi: 10.1007/3-540-45682-1_14 CrossRefGoogle Scholar
  18. 18.
    Patarin, J., Nachef, V., Berbain, C.: Generic attacks on unbalanced feistel schemes with contracting functions. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 396–411. Springer, Heidelberg (2006). doi: 10.1007/11935230_26 CrossRefGoogle Scholar
  19. 19.
    Patarin, J., Nachef, V., Berbain, C.: Generic attacks on unbalanced feistel schemes with expanding functions. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 325–341. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-76900-2_20 CrossRefGoogle Scholar
  20. 20.
    Poschmann, A., Ling, S., Wang, H.: 256 Bit standardized crypto for 650 GE – GOST revisited. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 219–233. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15031-9_15 CrossRefGoogle Scholar
  21. 21.
    Rivest, R.L., Robshaw, M., Sidney, R., Yin, Y.L.: The RC6 Block Cipher. Technical report. AES Submission (1998)Google Scholar
  22. 22.
    Schneier, B., Kelsey, J.: Unbalanced Feistel networks and block cipher design. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 121–144. Springer, Heidelberg (1996). doi: 10.1007/3-540-60865-6_49 CrossRefGoogle Scholar
  23. 23.
    Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit blockcipher CLEFIA (Extended Abstract). In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 181–195. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-74619-5_12 CrossRefGoogle Scholar
  24. 24.
    Volte, E., Nachef, V., Marriere, N.: Automatic expectation and variance computing for attacks on Feistel schemes. Cryptology ePrint Archive: 2016/136: Listing for 2016Google Scholar
  25. 25.
    Volte, E., Nachef, V., Patarin, J.: Improved generic attacks on unbalanced feistel schemes with expanding functions. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 94–111. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-17373-8_6 CrossRefGoogle Scholar
  26. 26.
    Yun, A., Park, J.H., Lee, J.: Lai-Massey scheme and Quasi-Feistel networks. Cryptology ePrint Archive: 2007/347: Listing for 2007Google Scholar
  27. 27.
    Zheng, Y., Matsumoto, T., Imai, H.: On the construction of block ciphers provably secure and not relying on any unproved hypotheses. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 461–480. Springer, New York (1990). doi: 10.1007/0-387-34805-0_42 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Emmanuel Volte
    • 1
  • Valérie Nachef
    • 1
  • Nicolas Marrière
    • 1
  1. 1.Department of MathematicsUniversity of Cergy-PontoiseCergy-Pontoise CedexFrance

Personalised recommendations