Advertisement

Semantic DMN: Formalizing Decision Models with Domain Knowledge

  • Diego Calvanese
  • Marlon Dumas
  • Fabrizio M. Maggi
  • Marco Montali
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10364)

Abstract

The Decision Model and Notation (DMN) is a recent OMG standard for the elicitation and representation of decision models. DMN builds on the notion of decision table, which consists of columns representing the inputs and outputs of a decision, and rows denoting rules. DMN models work under the assumption of complete information, and do not support integration with background domain knowledge. In this paper, we overcome these issues, by proposing decision knowledge bases (DKBs), where decisions are modeled in DMN, and domain knowledge is captured by means of first-order logic with datatypes. We provide a logic-based semantics for such an integration, and formalize how the different DMN reasoning tasks introduced in the literature can be lifted to DKBs. We then consider the case where background knowledge is expressed as an \(\mathcal {ALC}\) description logic ontology equipped with datatypes, and show that in this setting, all reasoning tasks can be actually decided in ExpTime. We discuss the effectiveness of our framework on a case study in maritime security.

Keywords

Background Knowledge Description Logic Decision Table Reasoning Task Output Attribute 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work is supported by the Euregio IPN12 project Knowledge-Aware Operational Support (KAOS), funded by the “European Region Tyrol-South Tyrol-Trentino” (EGTC) under the first call for basic research projects, and by the unibz project Knowledge-driven ENterprise Distributed cOmputing (KENDO).

References

  1. 1.
    Artale, A., Calvanese, D., Kontchakov, R., Ryzhikov, V., Savković, O.: Datatypes in DL-Lite. Technical report KRDB17-1, KRDB Research Centre for Knowledge and Data, Free Univ. of Bozen-Bolzano. https://www.inf.unibz.it/krdb/pub/TR/KRDB17-1.pdf
  2. 2.
    Artale, A., Kontchakov, R., Ryzhikov, V.: DL-Lite with attributes and datatypes. In: Proceedings of ECAI, pp. 61–66 (2012)Google Scholar
  3. 3.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, 2nd edn. (2007)Google Scholar
  4. 4.
    Batoulis, K., Meyer, A., Bazhenova, E., Decker, G., Weske, M.: Extracting decision logic from process models. In: Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.) CAiSE 2015. LNCS, vol. 9097, pp. 349–366. Springer, Cham (2015). doi: 10.1007/978-3-319-19069-3_22 CrossRefGoogle Scholar
  5. 5.
    Calvanese, D., Dumas, M., Laurson, Ü., Maggi, F.M., Montali, M., Teinemaa, I.: Semantics and analysis of DMN decision tables. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 217–233. Springer, Cham (2016). doi: 10.1007/978-3-319-45348-4_13 CrossRefGoogle Scholar
  6. 6.
    Enderton, H.B.: A Mathematical Introduction to Logic, 2nd edn. Academic Press (2001)Google Scholar
  7. 7.
    Haarslev, V., Möller, R., Wessel, M.: The description logic \(\cal{ALCNH}_{R+}\) extended with concrete domains: a practically motivated approach. In: Proceedings of IJCAR, pp. 29–44 (2001)Google Scholar
  8. 8.
    Horrocks, I., Sattler, U.: Ontology reasoning in the \(\cal{SHOQ}\)(D) description logic. In: Proceedings of IJCAI, pp. 199–204 (2001)Google Scholar
  9. 9.
    Lutz, C.: Description logics with concrete domains-A survey. Advances in Modal Logic, pp. 265–206 (2002)Google Scholar
  10. 10.
    Motik, B., Parsia, B., Patel-Schneider, P.F.: OWL 2 Web Ontology Language structural specification and functional-style syntax, 2nd edn. W3C Recommendation, W3C, December 2012. http://www.w3.org/TR/owl2-syntax/
  11. 11.
    Object Management Group: Decision Model and Notation (DMN) 1.0 (2015). http://www.omg.org/spec/DMN/1.0/
  12. 12.
    Pawlak, Z.: Decision tables - a rough set approach. Bull. EATCS 33, 85–95 (1987)MATHGoogle Scholar
  13. 13.
    Pooch, U.W.: Translation of decision tables. ACM Comput. Surv. 6(2), 125–151 (1974)CrossRefGoogle Scholar
  14. 14.
    Savkovic, O., Calvanese, D.: Introducing datatypes in DL-Lite. In: Proceedings of ECAI, pp. 720–725 (2012)Google Scholar
  15. 15.
    Vanthienen, J., Dries, E.: Illustration of a decision table tool for specifying and implementing knowledge based systems. Int. J. Artif. Intell. Tools 3(2), 267–288 (1994)CrossRefGoogle Scholar
  16. 16.
    Vanthienen, J., Mues, C., Aerts, A.: An illustration of verification and validation in the modelling phase of KBS development. DKE 27(3), 337–352 (1998)CrossRefMATHGoogle Scholar
  17. 17.
    Zaidi, A.K., Levis, A.H.: Validation and verification of decision making rules. Automatica 33(2), 155–169 (1997)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Diego Calvanese
    • 1
  • Marlon Dumas
    • 2
  • Fabrizio M. Maggi
    • 2
  • Marco Montali
    • 1
  1. 1.Free University of Bozen-BolzanoBolzanoItaly
  2. 2.University of TartuTartuEstonia

Personalised recommendations