Serviceology-as-a-Service: a Knowledge-Centric Interpretation

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10371)

Abstract

The paper proposes a knowledge-centric interpretation of the notion of Serviceology, as well as technical means of making this interpretation operational. On a theoretical level, the proposal mixes principles from the disciplines of Knowledge Management, Conceptual Modelling, Service Science and Artificial Intelligence in order to articulate a notion of Serviceology in the sense of “service knowledge”, then to deploy this knowledge “as-a-service” through conceptual modelling and knowledge graph distribution platforms. The goal is to establish a service management support framework, labelled here as SERVaaS (Servicelogy-as-a-Service), based on hybrid systems that maintain both human-oriented and machine-oriented representations of service knowledge. The human-oriented representations are enabled by agile, domain-specific service modelling methods, whereas the machine-oriented representations rely on distributed graph databases exposing knowledge graphs through RESTful APIs. The proposal is based on practical project experience, aiming towards the demonstration of enterprise semantics-awareness in information systems.

Keywords

Service management Knowledge graphs Service modelling Metamodelling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The Society for Serviceology – official website. http://www.serviceology.org/
  2. 2.
    Infor Industrial Manufacturing Perspectives. http://www.infor.com/content/industry-perspectives/serviceology.pdf/
  3. 3.
    Nonaka, I.: The Knowledge-Creating Company. Harvard Business Review 69, 96–104 (1991)Google Scholar
  4. 4.
    W3C, RDF 1.1 Concepts and Abstract Syntax. http://www.w3.org/TR/rdf11-concepts/
  5. 5.
    Buchmann, R.A.: Modeling product-service systems for the internet of things: the comvantage method. In: Karagiannis, D., Mayr, H. C., Mylopoulos, J. (eds.) Domain-specific Conceptual Modelling, pp. 417–437. Springer (2016)Google Scholar
  6. 6.
    W3C, The Turtle Syntax. https://www.w3.org/TR/turtle/
  7. 7.
    Karagiannis, D., Kühn, H.: Metamodelling platforms. In: Bauknecht, K., Tjoa, A.M., Quirchmayr, G. (eds.) EC-Web 2002. LNCS, vol. 2455, p. 182. Springer, Heidelberg (2002). doi:10.1007/3-540-45705-4_19
  8. 8.
    Karagiannis, D.: Agile modeling method engineering. In: Karanikolas, N., Akoumianakis, D., Mara, N., Vergados, D., Xenos, M. (eds.) Proceedings of PCI 2015, pp. 5–10. ACM (2015)Google Scholar
  9. 9.
    Kwan, S. K., Yamauchi, Y.: A creed for service designers. In: Sawatani, Y., Spohrer, J., Kwan, S., Takenaka, T. (eds.,) Serviceology for Smart Service Systems, pp. 39–44, Springer (2017)Google Scholar
  10. 10.
    Ueda, K., Takenaka, T., Nishino, N.: Service as artifact: reconsideration of value cocreation. In: Sawatani, Y., Spohrer, J., Kwan, S., Takenaka, T. (eds.) Serviceology for Smart Service Systems, pp. 307–316. Springer (2017)Google Scholar
  11. 11.
    Frank, U: Domain-specific modelling languages: requirements analysis and design guidelines. In: Reinhartz-Berger, I., Sturm, A., Clark, T., Cohen, S., Betin, J. (eds.) Domain Engineering, pp. 133–157. Springer (2013)Google Scholar
  12. 12.
    Karagiannis, D., Mayr, H. C., Mylopoulos, J. (eds.): Domain-specific Conceptual Modelling. Springer (2016)Google Scholar
  13. 13.
    Boucher, X., Medini, Kh., Fill, H. G.: Product-Service-System modeling method. In: Karagiannis, D., Mayr, H. C., Mylopoulos, J. (eds.) Domain-specific Conceptual Modelling pp. 455–484. Springer (2016)Google Scholar
  14. 14.
    Hara, Y., Masuda, H.: Global service enhancement for Japanese creative services based on the early/late binding concepts, In: Karagiannis, D., Mayr, H. C., Mylopoulos, J. (eds.), Domain-specific Conceptual Modelling pp. 509–526. Springer (2016)Google Scholar
  15. 15.
    BOC GmbH, The ADOxx metamodelling platform – reference webpage. http://www.adoxx.org/live
  16. 16.
    Kelly, S., Lyytinen, K., Rossi, M.: MetaEdit+ a fully configurable multi-user and multi-tool CASE and CAME environment. In: Bubenko, J., Krogstie, J., Pastor, O., Pernici, B., Rolland, C., Solvberg, A. (eds.) Seminal Contributions to Information Systems Engineering, p. 109–129. Springer (2013)Google Scholar
  17. 17.
    The Open Model Initiative Laboratory. http://www.omilab.org
  18. 18.
    Buchmann, R. A., Karagiannis, D.: Domain-specific Diagrammatic Modelling: a Source of Machine-Readable Semantics for the Internet of Things. Cluster Computing 20(1), 895–908Google Scholar
  19. 19.
    ComVantage Research Project Consortium, Project public deliverables. http://www.comvantage.eu/results-publications/public-deriverables/
  20. 20.
  21. 21.
    Levy, M., Kami, R.: A Web 2.0 platform for product-service system management. In: Mochimaru, M., Ueda, K., Takenaka, T. (eds.) Serviceology for Services, pp.96-106, Springer (2014)Google Scholar
  22. 22.
    Google, Knowledge Graph Search API. https://developers.google.com/knowledge-graph
  23. 23.
    DBPedia Association, DBPedia – official website. http://wiki.dbpedia.org
  24. 24.
    Eclipse, The RDF4J Server Rest API. http://rdf4j.org/doc/the-rdf4j-server-rest-api/
  25. 25.
    W3C, The SPARQL 1.1 Query Language. http://www.w3.org/TR/sparql11-overview/
  26. 26.
    Karagiannis, D., Buchmann, R.A.: Linked Open Models: extending Linked Open Data with conceptual model information. Information Systems 56, 174–197 (2016)CrossRefGoogle Scholar
  27. 27.
    Buchmann, R., Karagiannis, D.: Modelling Mobile App Requirements for Semantic Traceability. Requirements Enginerring 22(1), 41–75 (2017)Google Scholar
  28. 28.
    Buchmann, R. A., Karagiannis, D.: Enriching Linked Data with Semantics from Domain-specific Diagrammatic Models. Business and Information Systems Engineering 58(5), 341–353(2016)Google Scholar
  29. 29.
    Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-oriented domain analysis (FODA) feasibility study. Software Engineering Institute, Technical Report CMU/SEI-90-TR-021, 1990Google Scholar
  30. 30.
    Gotzinger, D., Miron, E. T., Staffel, F.: OMiLAB: An open collaborative environment for modeling method engineering. In: Karagiannis, D., Mayr, H. C., Mylopoulos, J. (eds.) Domain-specific Conceptual Modelling, pp. 55-78, Springer (2016)Google Scholar
  31. 31.
    Prackwieser, C., Buchmann, R., Grossmann, W., Karagiannis, D.: Overcoming Heterogeneity in Business Process Modeling with Rule-Based Semantic Mappings. Int. Journal of Software Engineering and Knowledge. Engineering 24(8), 1131–1158 (2014)Google Scholar
  32. 32.
    Ontotext, The GraphDB Server. http://graphdb.ontotext.com/
  33. 33.
    Eclipse, The RDF4J Server. http://rdf4j.org/
  34. 34.
    The Open Model Initiative Laboratory – the ComVantage project page. http://www.omilab.org/web/comvantage
  35. 35.
    Karagiannis, R., Buchmann, R. A., Burzynski, P., Reimer, U., Walch, M.: Fundamental Conceptual Modeling Languages in OMiLAB. In In: Karagiannis, D., Mayr, H. C., Mylopoulos, J. (eds.) Domain-specific Conceptual Modelling, pp. 3–30 Springer (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Business Informatics Research Centre, Faculty of Economic Sciences and Business AdministrationBabeş-Bolyai UniversityCluj NapocaRomania

Personalised recommendations