Advertisement

Signature Schemes with Randomized Verification

  • Cody Freitag
  • Rishab Goyal
  • Susan Hohenberger
  • Venkata Koppula
  • Eysa Lee
  • Tatsuaki Okamoto
  • Jordan Tran
  • Brent Waters
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10355)

Abstract

A signature scheme consists of a setup, signing and verification algorithms. In most existing works, the verification algorithm is assumed to be deterministic. However, there could be signature schemes where the verification algorithm is randomized. In this work, we study signature schemes with randomized verification. Our results can be summarized as follows.

First, we present a security definition for signature schemes with randomized verification. The standard EUFCMA notion of security for signature schemes with deterministic verification is very restrictive when we consider randomized verification. Therefore, we propose a new security definition called \(\chi \)-EUFCMA which captures a broad class of signature schemes with randomized verification.

Next, we analyse the security of Naor’s transformation from Identity Based Encryption to signature schemes. Such a transformation results in a scheme with randomized verification. We show that this transformation can be proven \(\chi \)-EUFCMA secure by choosing \(\chi \) appropriately.

Finally, we show how a scheme with randomized verification can be generically transformed to one with deterministic verification.

References

  1. 1.
    Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001). doi: 10.1007/3-540-44647-8_13 CrossRefGoogle Scholar
  2. 2.
    Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. SIAM J. Comput. 32(3), 586–615 (2003)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. J. Cryptol. 17(4), 297–319 (2004)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Cocks, C.: An identity based encryption scheme based on quadratic residues. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363. Springer, Heidelberg (2001). doi: 10.1007/3-540-45325-3_32 CrossRefGoogle Scholar
  5. 5.
    Cui, Y., Fujisaki, E., Hanaoka, G., Imai, H., Zhang, R.: Formal security treatments for IBE-to-signature transformation: relations among security notions. IEICE Trans. 92–A(1), 53–66 (2009)CrossRefGoogle Scholar
  6. 6.
    Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003). doi: 10.1007/978-3-540-45146-4_6 CrossRefGoogle Scholar
  8. 8.
    Schröder, D., Unruh, D.: Security of blind signatures revisited. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 662–679. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-30057-8_39 CrossRefGoogle Scholar
  9. 9.
    Unruh, D.: Everlasting multi-party computation. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 380–397. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40084-1_22 CrossRefGoogle Scholar
  10. 10.
    Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005). doi: 10.1007/11426639_7 CrossRefGoogle Scholar
  11. 11.
    Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-03356-8_36 CrossRefGoogle Scholar
  12. 12.
    Yao, A.C.: Theory and application of trapdoor functions. In: Proceedings of the 23rd Annual Symposium on Foundations of Computer Science, SFCS 1982, pp. 80–91 (1982). http://dx.doi.org/10.1109/SFCS.1982.95

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Cody Freitag
    • 1
  • Rishab Goyal
    • 1
  • Susan Hohenberger
    • 2
  • Venkata Koppula
    • 1
  • Eysa Lee
    • 1
  • Tatsuaki Okamoto
    • 3
  • Jordan Tran
    • 4
  • Brent Waters
    • 1
  1. 1.University of Texas at AustinAustinUSA
  2. 2.Johns Hopkins UniversityBaltimoreUSA
  3. 3.NTT Secure Platform LaboratoriesMusashinoJapan
  4. 4.Princeton UniversityPrincetonUSA

Personalised recommendations