Advertisement

BigBrain: Automated Cortical Parcellation and Comparison with Existing Brain Atlases

  • Marc FournierEmail author
  • Lindsay B. Lewis
  • Alan C. Evans
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10081)

Abstract

Most available 3D human brain atlases provide information only at a macroscopic level, while 2D atlases are often at a microscopic level but lack 3D integration. A 3D atlas defined upon fine-grain anatomical detail of cortical layers and cells is necessary to fully understand neurobiological processes. “BigBrain,” a high-resolution 3D model of a human brain at nearly cellular resolution, was released in 2013. This unique dataset enables the extraction of microscopic data for utilization in brain mapping, modeling and simulation. We propose an automated 3D cortical parcellation of the BigBrain volume into functionally-meaningful areas in order to create a modern high-resolution 3D cytoarchitectural atlas that will complement existing brain atlases. We use a distance metrics-based framework for BigBrain parcellation, and perform comparative analyses of our results with existing atlases (Brodmann and JuBrain atlases). This work has immediate application in teaching, neurosurgery, cognitive neuroscience, and imaging-based brain mapping.

Keywords

Brain atlases Cortical cytoarchitecture Segmentation and parcellation Brain mapping Image registration Computational neuroscience 

Notes

Acknowledgements

We acknowledge funding support from the Canadian Institutes of Health Research (CIHR) and from Canada’s Advanced Research and Innovation Network (CANARIE). We thank Compute Canada for continued support accessing the Compute Canada HPC grid through the CBRAIN software portal. We also thank Svenja Caspers for helpful discussion and providing expertise in neuroanatomy as well as Katrin Amunts and Karl Zilles from the Jülich Research Centre in Germany.

References

  1. 1.
    Amunts, K., Lepage, C., Borgeat, L., Mohlberg, H., Dickscheid, T., Rousseau, M.E., Bludau, S., Bazin, P.L., Lewis, L.B., Oros-Peusquens, A.M., Shah, N.J., Lippert, T., Zilles, K., Evans, A.C.: BigBrain: an ultrahigh-resolution 3D human brain model. Science 340, 1472–1475 (2013)CrossRefGoogle Scholar
  2. 2.
    Brodmann, K.: Vergleichende Lokalisationslehre der Grosshirnrinde. Johann Ambrosius Bart, Leipzig (1909)Google Scholar
  3. 3.
    Mohlberg, H., Eickhoff, S.B., Schleicher, A., Zilles, K., Amunts, K.: A new processing pipeline and release of cytoarchitectonic probabilistic maps – JuBrain. In: 18th Annual Meeting of the Organization for Human Brain Mapping, Beijing, China (2012)Google Scholar
  4. 4.
    Schleicher, A., Palomero-Gallagher, N., Morosan, P., Eickhoff, S.B., Kowalski, T., de Vos, K., Amunts, K., Zilles, K.: Quantitative architectural analysis: a new approach to cortical mapping. Anatomy Embryol. 210, 373–386 (2005)CrossRefGoogle Scholar
  5. 5.
    Hemanth, D.J., Selva Vijila, C.K., Selvakumar, A.I., Anitha, J.: Distance metric-based time-efficient fuzzy algorithm for abnormal magnetic resonance brain image segmentation. Neural Comput. Appl. 22, 1013–1022 (2013)CrossRefGoogle Scholar
  6. 6.
    Sanchez-Panchuelo, R.M., Besle, J., Beckett, A., Bowtell, R., Schluppeck, D., Francis, S.: Within-digit functional parcellation of brodmann areas of the human primary somatosensory cortex using functional magnetic resonance imaging at 7 tesla. J. Neurosci. 32, 15815–15822 (2012)CrossRefGoogle Scholar
  7. 7.
    Kong, Y., Wang, D., Shi, L., Hui, S.C.N., Chu, W.C.W.: Adaptive distance metric learning for diffusion tensor image segmentation. PLoS ONE 9, e92069 (2014)CrossRefGoogle Scholar
  8. 8.
    Chaves, R., Ramírez, J., Górriz, J.M., Illán, I., Segovia, F., Olivares, A.: Effective diagnosis of alzheimer’s disease by means of distance metric learning and random forest. In: Ferrández, J.M., Álvarez Sánchez, J.R., Paz, F., Toledo, F.J. (eds.) IWINAC 2011. LNCS, vol. 6687, pp. 59–67. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-21326-7_7 CrossRefGoogle Scholar
  9. 9.
    Uylingsa, H.B.M., Sanz-Arigita, E.J., de Vos, K., Pool, C.W., Evers, P., Rajkowska, G.: 3-D cytoarchitectonic parcellation of human orbitofrontal cortex correlation with postmortem MRI. Psychiatry Res. Neuroimaging 183, 1–20 (2010)CrossRefGoogle Scholar
  10. 10.
    Caspers, S., Geyer, S., Schleicher, A., Mohlberg, H., Amunts, K., Zilles, K.: The human inferior parietal cortex: cytoarchitectonic parcellation and interindividual variability. NeuroImage 33, 430–448 (2006)CrossRefGoogle Scholar
  11. 11.
    Altinkaya, A., Lepage, C., Lewis, L.B., Toussaint, P.J., Amunts, K., Zilles, K., Evans, A.C., Sadikot, A.F.: Ultrahigh resolution 3-d volumetric atlas of the human basal ganglia. In: 21st Annual Meeting of the Organization for Human Brain Mapping, Honolulu, USA (2015)Google Scholar
  12. 12.
    Altinkaya, A., Lepage, C., Ferreira, M., Pike, G.B., Evans, A.C., Sadikot A.F.: Registration of the bigbrain basal ganglia atlas to MNI space with surgical applications. In: 21st Annual Meeting of the Organization for Human Brain Mapping, Honolulu, USA (2015)Google Scholar
  13. 13.
    Bohland, J.W., Bokil, H., Allen, C.B., Mitra, P.P.: The brain atlas concordance problem: quantitative comparison of anatomical parcellations. PLoS ONE 4, e7200 (2009)CrossRefGoogle Scholar
  14. 14.
    Jones, S.E., Buchbinder, B.R., Aharon, I.: Three-dimensional mapping of cortical thickness using laplace’s equation. Hum. Brain Mapping 11, 12–32 (2000)CrossRefGoogle Scholar
  15. 15.
    Leprince, Y., Poupon, F., Delzescaux, T., Hasboun, D., Poupon, C., Riviere, D.: Combined laplacian-equivolumic model for studying cortical lamination with ultra high field MRI (7T). In: 12th IEEE International Symposium on Biomedical Imaging, pp. 580–583. IEEE Press, New York (2015)Google Scholar
  16. 16.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004)CrossRefGoogle Scholar
  17. 17.
    Toews, M., Wells, W.M.: Efficient and robust model-to-image alignment using 3D scale-invariant features. Med. Image Anal. 17, 271–282 (2013)CrossRefGoogle Scholar
  18. 18.
    Scovanner, P., Ali, S., Shah, M.: A 3-dimensional SIFT descriptor and its application to action recognition. In: Proceedings of the 15th ACM International Conference on Multimedia, pp. 357–360. AMC Press, New York (2007)Google Scholar
  19. 19.
    Golias, N.A., Dutton, R.W.: Delaunay triangulation and 3D adaptive mesh generation. Finite Elements Anal. Des. 25, 331–341 (1997)CrossRefzbMATHGoogle Scholar
  20. 20.
    Cha, S.H.: Comprehensive survey on distance/similarity measures between probability density functions. Int. J. Math. Models Methods Appl. Sci. 1, 300–307 (2007)Google Scholar
  21. 21.
    Mahalanobis, P.C.: On the generalised distance in statistics. Proc. Natl. Inst. Sci. India 2, 49–55 (1936)zbMATHGoogle Scholar
  22. 22.
    Hawrylycz, M.J., Lein, E.S., Guillozet-Bongaarts, A.L., Shen, E.H., Ng, L., Miller, J.A., van de Lagemaat, L.N., Smith, K.A., Ebbert, A., Riley, Z.L., et al.: An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391–399 (2012)CrossRefGoogle Scholar
  23. 23.
    Shannon, C.E.: A mathematical theory of communication. Bell Labs Tech. J. 27, 379–423 (1948)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Marc Fournier
    • 1
    Email author
  • Lindsay B. Lewis
    • 1
  • Alan C. Evans
    • 1
  1. 1.Brain Imaging Centre, Montreal Neurological InstituteMcGill UniversityMontrealCanada

Personalised recommendations