Skip to main content

Non-local Graph-Based Regularization for Deformable Image Registration

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10081))

Abstract

Deformable image registration aims to deliver a plausible spatial transformation between two or more images by solving a highly dimensional, ill-posed optimization problem. Covering the complexity of physiological motion has so far been limited to either generic physical models or local motion regularization models. This paper presents an alternative, graphical regularization model, which captures well the non-local scale of motion, and thus enables to incorporate complex regularization models directly into deformable image registration. In order to build the proposed graph-based regularization, a Minimum Spanning Tree (MST), which represents the underlying tissue physiology in a perceptually meaningful way, is computed first. This is followed by a fast non-local cost aggregation algorithm that performs regularization of the estimated displacement field using the precomputed MST. To demonstrate the advantage of the presented regularization, we embed it into the widely used Demons registration framework. The presented method is shown to improve the accuracy for exhale-inhale CT data pairs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Sotiras, A., Davatzikos, C., Paragios, N.: Deformable medical image registration: a survey. IEEE Trans. Med. Imaging 32(7), 1153–1190 (2013)

    Article  Google Scholar 

  2. Thirion, J.P.: Image matching as a difusion process: an analogy with maxwell’s demons. Med. Image Anal. 2(3), 243–260 (1998)

    Article  Google Scholar 

  3. Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Difeomorphic demons: efficient non-parametric image registration. NeuroImage 45, S61–S72 (2009)

    Article  Google Scholar 

  4. Pace, D.F., Aylward, S., Niethammer, M.: A locally adaptive regularization based on anisotropic difusion for deformable image registration of sliding organs. IEEE Trans. Med. Imag. 32(11), 2114–2126 (2013)

    Article  Google Scholar 

  5. Papież, B.W., Heinrich, M.P., Fehrenbach, J., Risser, L., Schnabel, J.: An implicit sliding-motion preserving regularisation via bilateral filtering for deformable image registration. Med. Image Anal. 18(8), 1299–1311 (2014)

    Article  Google Scholar 

  6. Papież, B.W., Franklin, J., Heinrich, M.P., Gleeson, F.V., Schnabel, J.A.: Liver motion estimation via locally adaptive over-segmentation regularization. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 427–434. Springer, Cham (2015). doi:10.1007/978-3-319-24574-4_51

    Chapter  Google Scholar 

  7. Glocker, B., Sotiras, A., Komodakis, N., Paragios, N.: Deformable medical image registration: setting the state of the art with discrete methods. Annu. Rev. Biomed. Eng. 13, 219–244 (2011)

    Article  Google Scholar 

  8. Heinrich, M.P., Jenkinson, M., Brady, M., Schnabel, J.: MRF-based deformable registration and ventilation estimation of lung CT. IEEE Trans. Med. Imag. 32(7), 1239–1248 (2013)

    Article  Google Scholar 

  9. Papież, B.W., Heinrich, M.P., Risser, L., Schnabel, J.A.: Complex lung motion estimation via adaptive bilateral filtering of the deformation field. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8151, pp. 25–32. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40760-4_4

    Chapter  Google Scholar 

  10. Yang, Q.: Stereo matching using tree filtering. IEEE Trans. Pattern Anal. Mach. Intell. 37(4), 834–846 (2015)

    Article  Google Scholar 

  11. Castillo, R., Castillo, E., Guerra, R., Johnson, V.E., McPhail, T., Garg, A.K., Guerrero, T.: A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets. Phys. Med. Biol. 54, 1849–1870 (2009)

    Article  Google Scholar 

  12. Wu, Z., Rietzel, E., Boldea, V., Sarrut, D., Sharp, G.: Evaluation of deformable registration of patient lung 4DCT with subanatomical region segmentations. Med. Phys. 35(2), 775–781 (2008)

    Article  Google Scholar 

  13. Dai, L., Yuan, M., Zhang, F., Zhang, X.: Fully connected guided image filtering. IEEE International Conference on Computer Vision, pp. 352–360 (2015)

    Google Scholar 

Download references

Acknowledgments

We would like to acknowledge funding from the CRUK/EPSRC Cancer Imaging Centre in Oxford.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bartłomiej W. Papież .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Papież, B.W., Szmul, A., Grau, V., Brady, J.M., Schnabel, J.A. (2017). Non-local Graph-Based Regularization for Deformable Image Registration. In: Müller, H., et al. Medical Computer Vision and Bayesian and Graphical Models for Biomedical Imaging. BAMBI MCV 2016 2016. Lecture Notes in Computer Science(), vol 10081. Springer, Cham. https://doi.org/10.1007/978-3-319-61188-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61188-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61187-7

  • Online ISBN: 978-3-319-61188-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics