Advertisement

Preliminaries

  • Philip J. Maher
Chapter

Abstract

This chapter presents, and highlights, material (much of which will be familiar to the reader) required for the rest of this work.

Bibliography

  1. 1.
    J.G. Aiken, J.A. Erdos, J.A. Goldstein, Unitary approximation of positive operators. Ill. J. Math. 24, 61–72 (1980)MathSciNetzbMATHGoogle Scholar
  2. 12.
    J. Diestel, Geometry of Banach Spaces. Lecture Notes in Mathematics, vol. 485 (Springer, Berlin, 1975)Google Scholar
  3. 13.
    H. Dunford, J.T. Schwartz, Linear Operators, Part II (Interscience, New York, 1963)zbMATHGoogle Scholar
  4. 20.
    P.R. Halmos, What does the spectral theorem say? Am. Math. Mon. 70, 241–247 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 23.
    P.R. Halmos, A Hilbert Space Problem Book, 2nd edn. (Springer, New York, 1974)CrossRefzbMATHGoogle Scholar
  6. 24.
    P.R. Halmos, J.E. McLaughlin, Partial isometries. Pac. J. Math. 13, 585–596 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 29.
    P.J. Maher, Some operator inequalities concerning generalized inverses. Ill. J. Math. 34, 503–514 (1990)MathSciNetzbMATHGoogle Scholar
  8. 31.
    P.J. Maher, Some norm inequalities concerning generalized inverses. Linear Algebra Appl. 174, 99–110 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 37.
    C.A. McCarthy, \(\mathbb{C}_{p}\). Isr. J. Math. 5, 249–271 (1967)Google Scholar
  10. 39.
    H. Radjavi, P. Rosenthal, Invariant Subspaces (Springer, Berlin, 1973)CrossRefzbMATHGoogle Scholar
  11. 40.
    J.R. Ringrose, Compact Non-Self-Adjoint Operators (Van Nostrand Rheinhold, London, 1971)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Philip J. Maher
    • 1
  1. 1.LondonUK

Personalised recommendations