Skip to main content

Studies on Environmental Radionuclides at Mt. Cimone

  • Chapter
  • First Online:
  • 331 Accesses

Part of the book series: SpringerBriefs in Meteorology ((BRIEFSMETEOR))

Abstract

Naturally-occurring and artificial radionuclides in PM10 aerosol samples have been systematically measured for more than 12 years at the “O. Vittori” observatory, a baseline station located in a crucial position in the middle of the Mediterranean basin under the influence of relevant atmospheric streamers crossing in this area. The database collected and herein described covers PM10 mass load, 7Be and 210Pb, while sporadic samples showed the occurrence of artificial radionuclides as a result of accidents such as the tsunami induced Fukushima nuclear accident or the Algeciras non-nuclear 137Cs release. The principal scope of radioactivity monitoring at CMN has been the study of Stratosphere to Troposphere Exchange, mainly based on the variation of cosmogenic 7Be, while the availability of 210Pb as well of the mass load of PM10 allowed to extend the efficiency of radiotracer data to the identification of continental aerosol sources such as Saharan dust and the Balkan region. Extensive work has been and is still in progress based on the collected dataset concerning the application of global circulation models which rely on the support of objective tracers for their validation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    World Meteorological Organization.

  2. 2.

    The most widely adopted time resolution in airborne radionuclide monitoring is on a weekly basis, which typically smooths out fluctuation due to meteorological variability leading to a remarkable loss of information.

  3. 3.

    TSP stands for Total Suspended Particulate, i.e. ambient aerosol samples collected without any size cut-off.

  4. 4.

    Until the 60’s it was believed that the main source of tropospheric ozone was the stratosphere.

  5. 5.

    The potential vorticity is defined as the specific volume times the scalar product of the absolute vorticity vector and the gradient of potential temperature. It can be described as the absolute circulation of an air parcel that is enclosed between two isentropic surfaces. Within the troposphere, the values of PV are usually low, while PV rapidly increases from the troposphere to the stratosphere due to the significant change in static stability.

References

  • Argiero L, Manfredini S, Palmas G (1961) Measurements of air radioactivity in Italy and their relation to the first Sahara atomic explosion. Nature 190:618–619

    Article  Google Scholar 

  • Baskaran M (2011) Po-210 and Pb-210 as atmospheric tracers and global atmospheric Pb-210 fallout: a review. J Environ Radioact. doi:10.1016/j.jenvrad.2010.10.007

  • Baskaran M (2012) Handbook of environmental isotope geochemistry. Springer, Berlin Heidelberg

    Book  Google Scholar 

  • Beine H, Amoroso A, Esposito G et al (2005) Deposition of atmospheric nitrous acid on alkaline snow surfaces. Geophys Res Lett 32:L10808

    Article  Google Scholar 

  • Bonasoni P, Evangelisti F, Bonafé U et al (1999) Stratosphere-troposphere exchanges: case studies recorded at Mt. Cimone during VOTALP project Phys Chem Earth (C). doi:10.1016/S1464-1917(99)00069-0

  • Bonasoni P, Evangelisti F, Bonafé U et al (2000) Stratospheric ozone intrusion episodes recorded at Mt. imone during the VOTALP project: case studies. Atmos Environ. doi:10.1016/S1352-2310(99)00280-0

  • Brattich E, Hernández-Ceballos M, Cinelli G, Tositti L (2015a) Analysis of 210Pb peak values at Mt. Cimone (1998-2011). Atmos Environ 112:136–147

    Article  Google Scholar 

  • Brattich E, Riccio A, Tositti L et al (2015b) An outstanding Saharan dust event at Mt. Cimone (2165 m a.s.l, Italy) in March 2004. Atmos Environ 113:223–235

    Article  Google Scholar 

  • Brattich E, Hernández-Ceballos M, JAG O et al (2016) The western Mediterranean basin as an aged aerosols reservoir. Insights from an old-fashioned but efficient radiotracer. Atmos Environ 141:481–493

    Article  Google Scholar 

  • Brattich E, Liu H, Tositti L et al (2017) Processes controlling the seasonal variations in 210Pb and 7Be at the Mt. Cimone WMO-GAW global station, Italy: a model analysis. Atmos Chem Phys 17:1061–1080

    Article  Google Scholar 

  • Considine D, Connell P, Logan J (2004) Simulating ozone in the near tropopause region with a new combined model of the stratosphere and troposphere. In: Zerefos C (ed) Quadriennal O3 Symposium, International O3 Commission

    Google Scholar 

  • Cristofanelli P, Bonasoni P, Tositti L et al (2006) A 6-year analysis of stratospheric intrusions and their influence on O3 at Mt. Cimone (2165 m above sea level). J Geophys Res. doi:10.1029/2005JD006553

  • Cristofanelli P, Calzolari F, Bonafè U et al (2009) Stratospheric intrusion index (SI2) from baseline measurement data. Theor Appl Clim. doi:10.1007/s00704-008-0073-x

  • Cristofanelli P, Scheel H-E, Steinbacher M et al (2015) Long-term surface ozone variability at Mt. Cimone WMO/GAW global station (2165 m a.s.l, Italy). Atmos Environ 101:23–33

    Article  Google Scholar 

  • Danielsen E (1968) Stratospheric-tropospheric exchange based on radioactivity, ozone and potential Vorticity. J Atmos Sci 25:502–518

    Article  Google Scholar 

  • Dietrich E, Favale B, Passamonti V (1997) Trentasei anni di misure di radioattività beta dell’aria sull’Italia al livello del suolo, Valori medi mensili dal 1957 al 1992. IFA, Roma

    Google Scholar 

  • Feely HW, Larsen RJ, Sanderson CG (1989) Factors that cause seasonal variations in beryllium-7 concentrations in surface air. J Environ Radioactiv. doi:10.1016/0265-931X(89)90046-5

  • Fischer H, Kormann R, Klüpfel T et al (2003) O3 production and trace gas correlations during the June 2000 MINATROC intensive measurement campaign at Mt. Cimone. Atmos Chem Phys 3:725–738

    Article  Google Scholar 

  • Fontes T, Silva M, Silva L et al (2014) Can artificial neural networks be used to predict the origin of O3 episodes? Sci Tot Environ. doi:10.1016/j.scitotenv.2014.04.077

  • Gerasopoulos E, Zanis P, Stohl A et al (2001) A climatology of 7Be at four high-altitude stations at the alps and the northern Apennines. Atmos Environ. doi:10.1016/S1352-2310(01)00400-9

  • Graustein W, Turekian K (1996) 7Be and 210Pb indicate an upper troposphere source for elevated O3 in the summertime subtropical free troposphere of the eastern North Atlantic. Geophys Rese Lett 23(5):539–542

    Article  Google Scholar 

  • Gründel M, Porstendörfer J (2004) Differences between the activity size distributions of the different natural radionuclide aerosols in outdoor air. Atmos Environ. doi:10.1016/j.atmosenv.2004.01.043

  • Hobbs P (2000) Atmospheric aerosols. In: Hobbs P (ed) Introduction to atmospheric chemistry. Cambridge University Press, Cambridge

    Chapter  Google Scholar 

  • IAEA (2015) The Fukushima Daiichi accident. IAEA, Vienna

    Google Scholar 

  • Itoh H, Narazaki Y (2016) Fast descent routes from within or near the stratosphere to the surface at Fukuoka, Japan, studied using 7Be measurements and trajectory calculations. Atmos Chem Phys. doi:10.5194/acp-16-6241-2016

  • Krysta M, Bocquet M (2007) Source reconstruction of an accidental radionuclide release at European scale. Q J R Meteorol Soc. doi:10.1002/qj.3

  • Lee H, Tositti L, Zheng X et al (2007) Analyses and comparisons of variations of 7Be, 210Pb, and 7Be/210Pb with O3 observations at two global atmosphere watch stations from high mountains. J Geophys Res. doi:10.1029/2006JD007421

  • Liu H, Considine D, Horowitz L et al (2016) Using beryllium-7 to assess cross-tropopause transport in global models. Atmos Chem Phys. doi:10.5194/acp-16-4641-2016

  • Marinoni A, Cristofanelli P, Calzolar F et al (2008) Continuos measurements of aerosol physical parameters at the Mt. Cimone GAW station (2165 m asl, Italy). Sci Tot Environ 391:241–251

    Article  Google Scholar 

  • Masson O, Baeza A, Bieringer J et al (2011) Tracking of airborne radionuclides from the damaged Fukushima Dai-Ichi nuclear reactors by European networks. Environ Sci Technol. doi:10.1021/es2017158

  • Masson O, Bieringer J, Brattich E et al (2016) Variation in airborne 134Cs, 137Cs, particulate 131I and 7Be maximum activities at high-altitude European locations after the arrival of Fukushima-labeled air masses. J Environ Radioac 162-163:14–22

    Article  Google Scholar 

  • Pio C, Legrand M, Oliveira T et al (2007) Climatology of aerosol composition (organic versus inorganic) at nonurban sites on a west-east transect across Europe. J Geophys Res 112:D23S02

    Google Scholar 

  • Reiter E (1975) Stratospheric-tropospheric exchange processes. Rev Geophys Space Phys 13(4):459–474

    Article  Google Scholar 

  • Reiter E (1978) Atmospheric transport processes. Part 4: radioactive tracers. In: U.S. Atomic Energy Commission, Division of Technical Information (ed). Springfield, USA

    Google Scholar 

  • Reiter R, Munzert K, Kanter H et al (1983) Cosmogenic radionuclides and O3 at a mountain station at 3.0 km a.s.l. AMGBB 23B:131–160

    Google Scholar 

  • Riccio A, Chianese E, Tositti L et al (2009) Modeling the transport of Saharan dust toward the Mediterranean region: an important issue for its ecological implications. Ecol Quest. doi:10.2478/v10090–009–0019–7

    Google Scholar 

  • Sprenger M, Wernli H (2003) A northern hemispheric climatology of cross-tropopause exchange for the ERA15 time period (1979–1993). J Geophys Res. doi:10.1029/2002JD002636

  • Stohl A, Wotawa G, Seibert P et al (1995) Interpolation errors in wind fields as a function of spatial and temporal resolution and their impact on different types of kinematic trajectories. J Appl Meteorol 34:2149–2165

    Article  Google Scholar 

  • Stohl A, Forster C, Frank A et al (2005) Technical note: the Lagrangian particle dispersion model FLEXPART version 6.2. Atmos Chem Phys 5:2461–2474

    Article  Google Scholar 

  • Tositti L, Hübener S, Kanter H et al (2004) Intercomparison of sampling and measurement of 7Be in air at four high-altitude locations in Europe. Appl Radiat Isot. doi:10.1016/j.apradiso.2004.04.003

  • Tositti L, Brattich E, Cinelli et al (2012) Comparison of radioactivity data measured in PM10 aerosol samples at two elevated stations in northern Italy during the Fukushima event. J Environ Radioac. doi:10.1016/j.jenvrad.2012.01.016

  • Tositti L, Riccio A, Sandrini S et al (2013) Short-term climatology of PM10 at a high altitude background station in southern Europe. Atmos Env. doi:10.1016/j.atmosenv.2012.10.051

  • Tositti L, Brattich E, Cinelli G et al (2014) 12 years of 7Be and 210Pb in Mt. Cimone, and their correlation with meteorological parameters. Atmos Env. doi:10.1016/j.atmosenv.2014.01.014

  • Turekian K, Graustein W (2003) Natural radionuclides in the atmosphere. In: Turekian ECH (ed) Treatise on geochemistry, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • UNSCEAR (2008) Sources and effects of ionizing radiation. Report to general assembly with scientific annexes, volume I, annex B. New York: United Nations

    Google Scholar 

  • Usoskin ICV, Schmidt F, Leppanen G et al (2009) Short-term production and synoptic influences on atmospheric 7Be concentrations. J Geophys Res. doi:10.1029/2008JD011333

  • Viezee W, Singh HB (1980) The distribution of beryllium-7 in the troposphere: implications on Startospheric/tropospheric air mass exchange. Geophys Res Lett 7(10):805–808

    Article  Google Scholar 

  • Vogt P, Pobanz B, Aluzzi F et al (1999) ARAC Modeling of the Algeciras, Spain steel mill Cs-137 release. Technical report UCRL-JC-131330. Lawrence Livermore National Laboratory, Livermore, California

    Google Scholar 

  • WMO-GAW (2001) Global atmosphere watch measurements guide. https://www.wmo.int/pages/prog/gcos/documents/gruanmanuals/GAW/gaw143.pdf Accessed 23 Jan 2017

  • WMO-GAW (2004) Report no. 155. http://library.wmo.int/pmb_ged/wmo-td_1201.pdf Accessed 17 Jan 2017

  • Young P, Archibald A, Bowman K et al (2013) Pre-industrial to end 21st century projections of tropospheric ozone from the atmospheric chemistry and climate model Intercomparison project (ACCMIP). Atmos Chem Phys 13:2063–2090

    Article  Google Scholar 

  • Zanis P, Schuepbach E, Gaggeler H et al (1999) Factors controlling beryllium-7 at Jungfraujoch in Switzerland. Tellus. doi:10.1034/j.1600-0889.1999.t01-3-00004.x

Download references

Acknowledgments

The authors gratefully acknowledge Italian Air Force Meteorological Office (IAFMS) and CNR-ISAC for their precious technical support at the station. CNR-ISAC is gratefully acknowledged for providing infrastructural access at the station. We also acknowledge Dr. Ubaldo Bonafé (CNR-ISAC), Dr. Paolo Bonasoni (CNR-ISAC), Dr. Francescopiero Calzolari (CNR-ISAC), Dr. Paolo Cristofanelli (CNR-ISAC), Dr. Miguel-Angel Hernández-Ceballos (JRC ISPRA), Dr. Giorgia Cinelli, Dr. Hsi-Na Lee (U.S. Department of Homeland Security), Dr. Hongyu Liu (NIA/NASA), Dr. Olivier Masson (IRSN), Prof. Angelo Riccio (University of Napoli Parthenope), and Prof. José Antonio Garcia-Orza (Universidad Miguel Hernandez de Elche) for precious research collaborations. The authors gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model used in this publication.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Cite this chapter

Cristofanelli, P. et al. (2018). Studies on Environmental Radionuclides at Mt. Cimone. In: High-Mountain Atmospheric Research . SpringerBriefs in Meteorology. Springer, Cham. https://doi.org/10.1007/978-3-319-61127-3_4

Download citation

Publish with us

Policies and ethics