Smart Computer-Assisted Cognitive Rehabilitation for Visually Impaired People

  • Miguel OliverEmail author
  • Mario García
  • José Pascual Molina
  • Jonatan Martínez
  • Antonio Fernández-Caballero
  • Pascual González
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 615)


The emergence of new devices that allow tracking body movements, such as Microsoft Kinect, has motivated the creation of different rehabilitation systems that allow people with disabilities to improve and recover some lost physical or cognitive capabilities. In general, the use of Kinect sensors to control the patient’s movements is the most common solution. In this case, the use of visual capabilities is needed because the patient must recognise the meaning and the objective’s location using the visual channel. Thus, current proposals based on Kinect are not useful for visually impaired people and must be adapted through replacing or enhancing the visual information with other stimuli that can be perceived by people with this disability. In this paper, we introduce an adaptation of a previous proposal including some vibrotactile stimuli that allow visually impaired people to determine the type (meaning) and the location of a specific object, allowing them to carry out a series of rehabilitation exercises.


Haptic Feedback Cognitive Rehabilitation Kinect Sensor Haptic Sensation Rehabilitation System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was partially supported by Spanish Ministerio de Economía y Competitividad (MINECO)/FEDER EU under TIN2016-79100-R grant. Miguel Oliver holds an FPU scholarship (FPU13/03141) from the Spanish Government.


  1. 1.
    Ballesteros, S., Kraft, E., Santana, S., Tziraki, C.: Maintaining older brain functionality: a targeted review. Neurosci. Biobehav. Rev. 55, 453–477 (2015)CrossRefGoogle Scholar
  2. 2.
    Bark, K., Hyman, E., Tan, F., Cha, E., Jax, S.A., Buxbaum, L.J., Kuchenbecker, K.J.: Effects of vibrotactile feedback on human learning of arm motions. IEEE Trans. Neural Syst. Rehabil. Eng. 23(1), 51–63 (2015)CrossRefGoogle Scholar
  3. 3.
    Desai, K., Bahirat, K., Ramalingam, S., Prabhakaran, B., Annaswamy, T., Makris, U.E.: Augmented reality-based exergames for rehabilitation. In: Proceedings of the 7th International Conference on Multimedia Systems, p. 22. ACM (2016)Google Scholar
  4. 4.
    González, C.S., Toledo, P., Padrón, M., Santos, E., Cairos, M.: Tango: H: creating active educational games for hospitalized children. In: Management Intelligent Systems, pp. 135–142. Springer (2013)Google Scholar
  5. 5.
    Kapur, P., Jensen, M., Buxbaum, L.J., Jax, S.A., Kuchenbecker, K.J.: Spatially distributed tactile feedback for kinesthetic motion guidance. In: Haptics Symposium, 2010 IEEE, pp. 519–526. IEEE (2010)Google Scholar
  6. 6.
    Lee, B.C., Chen, S., Sienko, K.H.: A wearable device for real-time motion error detection and vibrotactile instructional cuing. IEEE Trans. Neural Syst. Rehabil. Eng. 19(4), 374–381 (2011)CrossRefGoogle Scholar
  7. 7.
    Martínez, J., García, A.S., Oliver, M., Molina, J.P., González, P.: Vitaki: a vibrotactile prototyping toolkit for virtual reality and video games. Int. J. Hum.-Comput. Interact. 30(11), 855–871 (2014)CrossRefGoogle Scholar
  8. 8.
    Montero, F., López-Jaquero, V., Navarro, E., Sánchez, E.: Computer-aided relearning activity patterns for people with acquired brain injury. Comput. Edu. 57(1), 1149–1159 (2011)CrossRefGoogle Scholar
  9. 9.
    Oliver, M., González, P., Montero, F., Molina, J.P., Fernández-Caballero, A.: Smart computer-assisted cognitive rehabilitation for the ageing population. In: Ambient Intelligence-Software and Applications—7th International Symposium on Ambient Intelligence (ISAmI 2016), pp. 197–205. Springer (2016)Google Scholar
  10. 10.
    Rajanna, V., Vo, P., Barth, J., Mjelde, M., Grey, T., Oduola, C., Hammond, T.: Kinohaptics: an automated, wearable, haptic assisted, physio-therapeutic system for post-surgery rehabilitation and self-care. J. Med. Syst. 40(3), 60 (2016)CrossRefGoogle Scholar
  11. 11.
    Rodríguez, A.C., Roda, C., Montero, F., González, P., Navarro, E.: An interactive fuzzy inference system for teletherapy of older people. Cogn. Comput. 8(2), 318–335 (2016)CrossRefGoogle Scholar
  12. 12.
    Sadihov, D., Migge, B., Gassert, R., Kim, Y.: Prototype of a vr upper-limb rehabilitation system enhanced with motion-based tactile feedback. In: World Haptics Conference (WHC), 2013, pp. 449–454. IEEE (2013)Google Scholar
  13. 13.
    Smith, S.T., Schoene, D.: The use of exercise-based videogames for training and rehabilitation of physical function in older adults: current practice and guidelines for future research. Aging Health 8(3), 243–252 (2012)CrossRefGoogle Scholar
  14. 14.
    Sáenz-de Urturi, Z., Zapirain, B.G., Zorrilla, A.M.: Kinect-based virtual game for motor and cognitive rehabilitation: a pilot study for older adults. In: Proceedings of the 8th International Conference on Pervasive Computing Technologies for Healthcare, pp. 262–265. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering) (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Miguel Oliver
    • 1
    Email author
  • Mario García
    • 1
  • José Pascual Molina
    • 1
    • 2
  • Jonatan Martínez
    • 1
  • Antonio Fernández-Caballero
    • 1
    • 2
  • Pascual González
    • 1
    • 2
  1. 1.Universidad de Castilla-La ManchaInstituto de Investigación en Informática de AlbaceteAlbaceteSpain
  2. 2.Universidad de Castilla-La ManchaDepartamento de Sistemas InformáticosAlbaceteSpain

Personalised recommendations