Skip to main content

Stimulated Microgravity and Induction of Angiogenesis; A New Perspective in Wound Healing

  • Chapter
  • First Online:
Biochemical Basis and Therapeutic Implications of Angiogenesis

Abstract

The current research interest in the therapeutic management of wound healing is to attain a complete and rapid healing of chronic wounds with minimal scar. There is an urge to apply a novel approach to prompt the wound healing process because of the huge economic burden worldwide. Hence, the current article initially focuses on the management and care of wounds from classic to currently available techniques and vulnerability of wound. Several propositions for better wound healing has been proposed, one of them is simulated microgravity which heals the wounds by promoting microgravity. Stimulated microgravity induces changes in cytoskeleton; thereby it regulates the behavior of endothelial cells in terms of cell proliferation, adhesion, migration, production of extracellular matrix and translocation of bioactive molecules inside the cells. Additionally, we have listed around 40 genes which are potentially involved in angiogenesis and are differentially expressed in endothelial cells under microgravity conditions. The coordinated cellular and molecular events in endothelial cells in microgravity promote angiogenesis which in turn facilitates wound healing process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adair TH, Montani J-P (2010) Angiogenesis. In: Colloquium series on integrated systems physiology: from molecule to function. Morgan & Claypool Life Sciences, San Rafael, pp 1–84

    Google Scholar 

  2. Awolesi MA, Sessa WC, Sumpio BE (1995) Cyclic strain upregulates nitric oxide synthase in cultured bovine aortic endothelial cells. J Clin Invest 96(3):1449–1454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bayat A, McGrouther D, Ferguson M (2003) Skin scarring. BMJ Br Med J 326(7380):88

    Article  CAS  Google Scholar 

  4. Blaber E, Sato K, Almeida EA (2014) Stem cell health and tissue regeneration in microgravity. Stem Cells Dev 23(S1):73–78

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cancio LC, Howard PA, McManus AT et al (2001) Burn wound infections. In: Holzheimer RG, Mannick JA (eds) Surgical treatment: evidence-based and problem-oriented. Zuckschwerdt, Munich. Available from: https://www.ncbi.nlm.nih.gov/books/NBK6970/

    Google Scholar 

  6. Carlsson SI, Bertilaccio MT, Ballabio E, Maier JA (2003) Endothelial stress by gravitational unloading: effects on cell growth and cytoskeletal organization. Biochim Biophys Acta (BBA)-Mol Cell Res 1642(3):173–179

    Article  CAS  Google Scholar 

  7. Chatterjee S, Fujiwara K, Pérez NG, Ushio-Fukai M, Fisher AB (2015) Mechanosignaling in the vasculature: emerging concepts in sensing, transduction and physiological responses. Am J Phys Heart Circ Phys 308(12):H1451–H1462

    Google Scholar 

  8. Cines DB, Pollak ES, Buck CA, Loscalzo J, Zimmerman GA, McEver RP, Pober JS, Wick TM, Konkle BA, Schwartz BS (1998) Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood 91(10):3527–3561

    CAS  PubMed  Google Scholar 

  9. Cotrupi S, Maier J (2004) Is HSP70 upregulation crucial for cellular proliferative response in simulated microgravity? J Gravit Physiol J Int Soc Gravit Physiol 11(2):P173–P176

    Google Scholar 

  10. Davidson JM, Aquino AM, Woodward SC, Wilfinger WW (1999) Sustained microgravity reduces intrinsic wound healing and growth factor responses in the rat. FASEB J 13(2):325–329

    CAS  PubMed  Google Scholar 

  11. Djonov V, Schmid M, Tschanz S, Burri P (2000) Intussusceptive angiogenesis its role in embryonic vascular network formation. Circ Res 86(3):286–292

    Article  CAS  PubMed  Google Scholar 

  12. Duscher D, Barrera J, Wong VW, Maan ZN, Whittam AJ, Januszyk M, Gurtner GC (2016) Stem cells in wound healing: the future of regenerative medicine? A mini-review. Gerontology 62(2):216–225

    Article  CAS  PubMed  Google Scholar 

  13. Ehrlich HP, Kelley SF (1992) Hypertrophic scar: an interruption in the remodeling of repair-a laser Doppler blood flow study. Plast Reconstr Surg 90(6):993–998

    Article  CAS  PubMed  Google Scholar 

  14. Farahani RM, DiPietro LA (2008) Microgravity and the implications for wound healing. Int Wound J 5(4):552–561

    Article  PubMed  Google Scholar 

  15. Förstermann U, Sessa WC (2012) Nitric oxide synthases: regulation and function. Eur Heart J 33(7):829–837

    Article  PubMed  Google Scholar 

  16. Fox CL (1968) Silver sulfadiazine—a new topical therapy for pseudomonas in burns: therapy of pseudomonas infection in burns. Arch Surg 96(2):184–188

    Article  PubMed  Google Scholar 

  17. Garbuzenko DV, Arefyev NO, Belov DV (2016) Restructuring of the vascular bed in response to hemodynamic disturbances in portal hypertension. World J Hepatol 8(36):1602–1609

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ghimire K, Altmann HM, Straub A, Isenberg JS (2017) Nitric oxide: what’s new to NO? Am J Physiol Cell Physiol 312:C254–C262

    Article  PubMed  Google Scholar 

  19. Gilmore M (1991) Phases of wound healing. Dimens Oncol Nurs J Div Nurs 5(3):32–34

    CAS  Google Scholar 

  20. Grenon SM, Jeanne M, Aguado-Zuniga J, Conte MS, Hughes-Fulford M (2013) Effects of gravitational mechanical unloading in endothelial cells: association between caveolins, inflammation and adhesion molecules. Sci Rep 3:1494

    Article  PubMed  PubMed Central  Google Scholar 

  21. Griffoni C, Di Molfetta S, Fantozzi L, Zanetti C, Pippia P, Tomasi V, Spisni E (2011) Modification of proteins secreted by endothelial cells during modeled low gravity exposure. J Cell Biochem 112(1):265–272

    Article  CAS  PubMed  Google Scholar 

  22. Grosse J, Wehland M, Pietsch J, Ma X, Ulbrich C, Schulz H, Saar K, Hübner N, Hauslage J, Hemmersbach R (2012) Short-term weightlessness produced by parabolic flight maneuvers altered gene expression patterns in human endothelial cells. FASEB J 26(2):639–655

    Article  CAS  PubMed  Google Scholar 

  23. Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453(7193):314–321

    Article  CAS  PubMed  Google Scholar 

  24. Dn H, Lemaster J, Beard S, Bernstein N et al (1986) The quality of life after major thermal injury in children: an analysis of 12 survivors with 80% total body, 70% third-degree burns. J Trauma Acute Care Surg 26(7):609–619

    Article  Google Scholar 

  25. Infanger M, Ulbrich C, Baatout S, Wehland M, Kreutz R, Bauer J, Grosse J, Vadrucci S, Cogoli A, Derradji H (2007) Modeled gravitational unloading induced downregulation of endothelin-1 in human endothelial cells. J Cell Biochem 101(6):1439–1455

    Article  CAS  PubMed  Google Scholar 

  26. Italiani P, Boraschi D (2014) From monocytes to M1/M2 macrophages: phenotypical vs. functional differentiation. Front Immunol 5:514

    Google Scholar 

  27. Kafka M, Collins V, Kamolz LP, Rappl T, Branski LK, Wurzer P (2017) Evidence of invasive and noninvasive treatment modalities for hypertrophic scars: a systematic review. Wound Repair Regen. doi:10.1111/wrr.12507

  28. Kaimal V, Bardes EE, Tabar SC, Jegga AG, Aronow BJ (2010) ToppCluster: a multiple gene list feature analyzer for comparative enrichment clustering and network-based dissection of biological systems. Nucleic Acids Res 38:W96–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kirby AC, Yrlid U, Wick MJ (2002) The innate immune response differs in primary and secondary Salmonella infection. J Immunol 169(8):4450–4459

    Article  CAS  PubMed  Google Scholar 

  30. Kopp S, Warnke E, Wehland M, Aleshcheva G, Magnusson NE, Hemmersbach R, Corydon TJ, Bauer J, Infanger M, Grimm D (2015) Mechanisms of three-dimensional growth of thyroid cells during long-term simulated microgravity. Sci Rep 5:16691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kourtidou-Papadeli C, Papadelis C, Vernikos J, Bamidis PD, Hitoglou-Antoniadou M, Perantoni E, Vlachogiannis E (2008) The therapeutic benefits of gravity in space and on earth. Hippokratia 12(Suppl 1):28

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Loesberg W, Walboomers X, Van Loon J, Jansen J (2008) Simulated microgravity activates MAPK pathways in fibroblasts cultured on microgrooved surface topography. Cell Motil Cytoskeleton 65(2):116–129

    Article  CAS  PubMed  Google Scholar 

  33. Lü D, Liu X, Gao Y, Huo B, Kang Y, Chen J, Sun S, Chen L, Luo X, Long M (2013) Asymmetric migration of human keratinocytes under mechanical stretch and cocultured fibroblasts in a wound repair model. PLoS One 8(9):e74563

    Article  PubMed  PubMed Central  Google Scholar 

  34. Maier JA, Cialdai F, Monici M, Morbidelli L (2015) The impact of microgravity and hypergravity on endothelial cells. Biomed Res Int 2015:434803

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mariotti M, Maier JA (2008) Gravitational unloading induces an anti-angiogenic phenotype in human microvascular endothelial cells. J Cell Biochem 104(1):129–135

    Article  CAS  PubMed  Google Scholar 

  36. Monici M, Cialdai F, Romano G, Fusi F, Egli M, Pezzatini S, Morbidelli L (2011) An in vitro study on tissue repair: impact of unloading on cells involved in the remodelling phase. Microgravity Sci Technol 23(4):391–401

    Article  CAS  Google Scholar 

  37. Moorthi A, Vimalraj S, Avani C, He Z, Partridge NC, Selvamurugan N (2013) Expression of microRNA-30c and its target genes in human osteoblastic cells by nano-bioglass ceramic-treatment. Int J Biol Macromol 56:181–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Muir I (1990) On the nature of keloid and hypertrophic scars. Br J Plast Surg 43(1):61–69

    Article  CAS  PubMed  Google Scholar 

  39. Mustoe TA, Cooter RD, Gold MH, Hobbs F, Ramelet A-A, Shakespeare PG, Stella M, Téot L, Wood FM, Ziegler UE (2002) International clinical recommendations on scar management. Plast Reconstr Surg 110(2):560–571

    Article  PubMed  Google Scholar 

  40. Papaseit C, Pochon N, Tabony J (2000) Microtubule self-organization is gravity-dependent. Proc Natl Acad Sci 97(15):8364–8368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pober JS, Sessa WC (2007) Evolving functions of endothelial cells in inflammation. Nat Rev Immunol 7(10):803–815

    Article  CAS  PubMed  Google Scholar 

  42. Rajendran P, Rengarajan T, Thangavel J, Nishigaki Y, Sakthisekaran D, Sethi G, Nishigaki I (2013) The vascular endothelium and human diseases. Int J Biol Sci 9(10):1057–1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sandoo A, Veldhuijzen van Zanten JJ, Metsios GS, Carroll D, Kitas GD (2010) The endothelium and its role in regulating vascular tone. Open Cardiovasc Med J 4:302–312

    Article  PubMed  PubMed Central  Google Scholar 

  44. Saravanan S, Vimalraj S, Vairamani M, Selvamurugan N (2015) Role of mesoporous wollastonite (calcium silicate) in mesenchymal stem cell proliferation and osteoblast differentiation: a cellular and molecular study. J Biomed Nanotechnol 11(7):1124–1138

    Article  CAS  PubMed  Google Scholar 

  45. Schafer M, Werner S (2008) Cancer as an overhealing wound: an old hypothesis revisited. Nat Rev Mol Cell Biol 9(8):628–638

    Article  CAS  PubMed  Google Scholar 

  46. Schuh AC, Keating SJ, Monteclaro FS, Vogt PK, Breitman ML (1990) Obligatory wounding requirement for tumorigenesis in v-jun transgenic mice. Nature 346(6286):756–760

    Article  CAS  PubMed  Google Scholar 

  47. Shi F, Wang Y-C, Zhao T-Z, Zhang S, T-Y D, Yang C-B, Li Y-H, Sun X-Q (2012) Effects of simulated microgravity on human umbilical vein endothelial cell angiogenesis and role of the PI3K-Akt-eNOS signal pathway. PLoS One 7(7):e40365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Siamwala JH, Majumder S, Tamilarasan K, Muley A, Reddy SH, Kolluru GK, Sinha S, Chatterjee S (2010a) Simulated microgravity promotes nitric oxide-supported angiogenesis via the iNOS–cGMP–PKG pathway in macrovascular endothelial cells. FEBS Lett 584(15):3415–3423

    Article  CAS  PubMed  Google Scholar 

  49. Siamwala JH, Reddy SH, Majumder S, Kolluru GK, Muley A, Sinha S, Chatterjee S (2010b) Simulated microgravity perturbs actin polymerization to promote nitric oxide-associated migration in human immortalized Eahy926 cells. Protoplasma 242(1–4):3–12

    Article  CAS  PubMed  Google Scholar 

  50. Slemp AE, Kirschner RE (2006) Keloids and scars: a review of keloids and scars, their pathogenesis, risk factors, and management. Curr Opin Pediatr 18(4):396–402

    Article  PubMed  Google Scholar 

  51. Tao H, Butler JP, Luttrell T (2012) The role of whirlpool in wound care. J Am Coll Clin Wound Spec 4(1):7–12

    Article  PubMed  Google Scholar 

  52. Thiel CS, Paulsen K, Bradacs G, Lust K, Tauber S, Dumrese C, Hilliger A, Schoppmann K, Biskup J, Gölz N (2012) Rapid alterations of cell cycle control proteins in human T lymphocytes in microgravity. Cell Commun Signal 10(1):1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Van Hinsbergh VW (2012) Endothelium--role in regulation of coagulation and inflammation. Semin Immunopathol 34(1):93–106

    Article  PubMed  Google Scholar 

  54. Veeriah V, Zanniti A, Paone R, Chatterjee S, Rucci N, Teti A, Capulli M (2016) Interleukin-1β, lipocalin 2 and nitric oxide synthase 2 are mechano-responsive mediators of mouse and human endothelial cell-osteoblast crosstalk. Sci Rep 6:29880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Versari S, Klein-Nulend J, van Loon J, Bradamante S (2013) Influence of oxygen in the cultivation of human mesenchymal stem cells in simulated microgravity: an explorative study. Microgravity Sci Technol 25(1):59

    Article  CAS  Google Scholar 

  56. Vimalraj S, Selvamurugan N (2014) MicroRNAs expression and their regulatory networks during mesenchymal stem cells differentiation toward osteoblasts. Int J Biol Macromol 66:194–202

    Article  CAS  PubMed  Google Scholar 

  57. Vimalraj S, Selvamurugan N (2015) Regulation of proliferation and apoptosis in human osteoblastic cells by microRNA-15b. Int J Biol Macromol 79:490–497

    Article  CAS  PubMed  Google Scholar 

  58. Wang J, Dodd C, Shankowsky HA, Scott PG, Tredget EE (2008) Deep dermal fibroblasts contribute to hypertrophic scarring. Lab Investig 88(12):1278–1290

    Article  CAS  PubMed  Google Scholar 

  59. Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science (New York, NY) 260(5111):1124–1127

    Article  CAS  Google Scholar 

  60. Williams D, Kuipers A, Mukai C, Thirsk R (2009) Acclimation during space flight: effects on human physiology. Can Med Assoc J 180(13):1317–1323

    Article  Google Scholar 

  61. Yates CC, Hebda P, Wells A (2012) Skin wound healing and scarring: fetal wounds and regenerative restitution. Birth Defects Res C Embryo Today 96(4):325–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pichu S, Sathiyamoorthy J, Vimalraj S, Viswanathan V, Chatterjee S (2017) Impact of lysyl oxidase (G473A) polymorphism on diabetic foot ulcers. Int J Biol Macromol 103:242–247

    Article  CAS  PubMed  Google Scholar 

  63. Vimalraj S, Sumantran VN, Chatterjee S (2017) MicroRNAs: impaired vasculogenesis in metal induced teratogenicity. Reprod Toxicol 70:30–48

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by research grant from Department of Science and Technology, Science and Engineering Research Board (SERB), India to S. Vimalraj (grant no. PDF/2015/000133). This work was partially supported by a grant from the University Grant Commission-Faculty Research Program (UGC-FRP), Government of India to SC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suvro Chatterjee Ph.D .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Vimalraj, S., Dharanibalan, K., Chatterjee, S. (2017). Stimulated Microgravity and Induction of Angiogenesis; A New Perspective in Wound Healing. In: Mehta, J., Mathur, P., Dhalla, N. (eds) Biochemical Basis and Therapeutic Implications of Angiogenesis. Advances in Biochemistry in Health and Disease, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-61115-0_22

Download citation

Publish with us

Policies and ethics