Skip to main content

Angiogenesis and Atherosclerosis

  • Chapter
  • First Online:
Biochemical Basis and Therapeutic Implications of Angiogenesis

Abstract

Atherosclerotic heart disease is the leading cause of morbidity and mortality worldwide. Despite recent advances in our understanding of atherosclerosis the role of angiogenesis in atherosclerosis is still being debated. The use of therapeutic angiogenesis has been widely regarded as an attractive approach in treatment of ischemic heart disease. On the other hand, there is growing evidence that neovascularization contributes to the progression of atherosclerotic lesions, and that it may play key role in intraplaque hemorrhage, plaque destabilization and rupture. Most trials on therapeutic angiogenesis using growth factors like VEGF (vascular endothelial growth factor)/FGF (fibroblast growth factor) have used single agents and are inconclusive. Bench and bedside research continues to bring insight into new mechanisms of atherosclerosis and tumor growth. Further understanding of different facets of angiogenesis may help in the development of novel and specific therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fishman AP (1982) Endothelium: a distributed organ of diverse capabilities. Ann N Y Acad Sci 401:1

    Article  CAS  PubMed  Google Scholar 

  2. Augustin HG, Kozian DH, Johnson RC (1994) Differentiation of endothelial cells: analysis of the constitutive and activated endothelial cell phenotypes. BioEssays 16:901

    Article  CAS  PubMed  Google Scholar 

  3. Cines DB, Pollak ES, Buck CA, Loscalzo J, Zimmerman GA, RP ME et al (1998) Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood 91(10):3527–3561

    CAS  PubMed  Google Scholar 

  4. Takahashi H, Shibuya M (2005) The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin Sci 109:227–241

    Article  CAS  PubMed  Google Scholar 

  5. Koch S, Tugues S, Li X, Gualandi L, Claesson-Welsh L (2011) Signal transduction by vascular endothelial growth factor receptors. Biochem J 437:169–183

    Article  CAS  PubMed  Google Scholar 

  6. Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6:389–395

    Article  CAS  PubMed  Google Scholar 

  7. Koester W (1876) Endareritis and arteritis. Berl Klin Wochenschr 13:454–455

    Google Scholar 

  8. Paterson JC (1936) Vascularization and hemorrhage of the intima of arteriosclerotic coronary arteries. Arch Pathol 22:313–324

    Google Scholar 

  9. Paterson JC (1938) Capillary rupture with intimal hemorrhage as a causative factor in coronary thrombosis. Arch Pathol 25:474–487

    Google Scholar 

  10. Barger AC, Beeuwkes R, Lainey LL, Silverman KJ (1984) Hypothesis: vasa vasorum and neovascularization of human coronary arteries. A possible role in the pathophysiology of atherosclerosis. N Engl J Med 310(3):175–177

    Article  CAS  PubMed  Google Scholar 

  11. Moreno PR, Purushothaman KR, Fuster V, Echeverri D, Truszczynska H, Sharma SK et al (2004) Plaque neovascularization is increased in ruptured atherosclerotic lesions of human aorta: implications for plaque vulnerability. Circulation 110:2032–2038

    Article  PubMed  Google Scholar 

  12. Virmani R, Kolodgie FD, Burke AP, Finn AV, Gold HK, Tulenko TN et al (2005) Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol 25(10):2054–2061

    Article  CAS  PubMed  Google Scholar 

  13. Barger AC, Beeuwkes R (1990) Rupture of coronary vasa vasorum as a trigger of acute myocardial infarction. Am J Cardiol 66:41–43

    Article  Google Scholar 

  14. Moulton KS, Heller E, Konerding MA, Flynn E, Palinski W, Folkman J (1999) Angiogenesis inhibitors endostatin or TNP-470 reduce intimal neovascularization and plaque growth in apolipoprotein E–deficient mice. Circulation 99:1726–1732

    Article  CAS  PubMed  Google Scholar 

  15. Moulton KS, Vakili K, Zurakowski D, Soliman M, Butterfield C, Sylvin E et al (2003) Inhibition of plaque neovascularization reduces macrophage accumulation and progression of advanced atherosclerosis. Proc Natl Acad Sci U S A 100(8):4736–4741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Celletti FL, Waugh JM, Amabile PG, Brendolan A, Hilfiker PR, Dake MD (2001) Vascular endothelial growth factor enhances atherosclerotic plaque progression. Nat Med 7:425–429

    Article  CAS  PubMed  Google Scholar 

  17. Khurana R, Zhuang Z, Bhardwaj S, Murakami M, De Muinck E, Yla-Herttuala S et al (2004) Angiogenesis-dependent and independent phases of intimal hyperplasia. Circulation 110(16):2436–2443

    Article  PubMed  Google Scholar 

  18. Zhao Q, Egashira K, Hiasa K, Ishibashi M, Inoue S, Ohtani K et al (2004) Essential role of vascular endothelial growth factor and Flt-1 signals in neointimal formation after periadventitial injury. Arterioscler Thromb Vasc Biol 24(12):2284–2289

    Article  CAS  PubMed  Google Scholar 

  19. Sluimer JC, Daemen MJ (2009) Novel concepts in atherogenesis: angiogenesis and hypoxia in atherosclerosis. J Pathol 218:7–29

    Article  PubMed  Google Scholar 

  20. Ago T, Kuroda J, Kamouchi M, Sadoshima J, Kitazono T (2011) Pathophysiological roles of NADPH oxidase/nox family proteins in the vascular system. -review and perspective. Circ J 75:1791–1800

    Article  CAS  PubMed  Google Scholar 

  21. Jiang J, Yan M, Mehta JL, Hu C (2011) Angiogenesis is a link between atherosclerosis and tumorigenesis: role of LOX-1. Cardiovasc Drugs Ther 25:461–468

    Article  CAS  PubMed  Google Scholar 

  22. Li D, Mehta JL (2000) Upregulation of endothelial receptor for oxidized LDL (LOX-1) by oxidized LDL and implications in apoptosis of human coronary artery endothelial cells: evidence from use of antisense LOX-1 mRNA and chemical inhibitors. Arterioscler Thromb Vasc Biol 20:1116–1122

    Article  CAS  PubMed  Google Scholar 

  23. Kahles T, Kohnen A, Heumueller S, Rappert A, Bechmann I, Liebner S et al (2010 Oct) NADPH oxidase Nox1 contributes to ischemic injury in experimental stroke in mice. Neurobiol Dis 40(1):185–192

    Article  CAS  PubMed  Google Scholar 

  24. Walder CE, Green SP, Darbonne WC, Mathias J, Rae J, Dinauer MC et al (1997 Nov) Ischemic stroke injury is reduced in mice lacking a functional NADPH oxidase. Stroke 28(11):2252–2258

    Article  CAS  PubMed  Google Scholar 

  25. Dandapat A, Hu C, Sun L, Mehta JL (2007) Small concentrations of oxLDL induce capillary tube formation from endothelial cells via LOX-1-dependent redox-sensitive pathway. Arterioscler Thromb Vasc Biol 27:2435–2442

    Article  CAS  PubMed  Google Scholar 

  26. Kanata S, Akagi M, Nishimura S, Hayakawa S, Yoshida K, Sawamura T et al (2006) Oxidized LDL binding to LOX-1 upregulates VEGF expression in cultured bovine chondrocytes through activation of PPAR-gamma. Biochem Biophys Res Commun 348:1003–1010

    Article  CAS  PubMed  Google Scholar 

  27. Hu C, Dandapat A, Mehta JL (2007) Angiotensin II induces capillary formation from endothelial cells via the LOX-1 dependent redox-sensitive pathway. Hypertension 50:952–957

    Article  CAS  PubMed  Google Scholar 

  28. Khaidakov M, Szwedo J, Mitra S, Ayyadevara S, Dobretsov M, Lu J, Mehta JL (2010) Antiangiogenic and antimitotic effects of aspirin in hypoxia-reoxygenation modulation of the LOX-1-NADPH oxidase axis as a potential mechanism. J Cardiovasc Pharmacol 56:635–641

    Article  CAS  PubMed  Google Scholar 

  29. Mofidi R, Crotty TB, McCarthy P, Sheehan SJ, Mehigan D, Keaveny TV (2001) Association between plaque instability, angiogenesis and symptomatic carotid occlusive disease. Br J Surg 88(7):945–950

    Article  CAS  PubMed  Google Scholar 

  30. Horie N, Morofuji Y, Morikawa M, Tateishi Y, Izumo T, Hayashi K et al (2015) Communication of inwardly projecting neovessels with the lumen contributes to symptomatic intraplaque hemorrhage in carotid artery stenosis. J Neurosurg 123(5):1125–1132

    Article  PubMed  Google Scholar 

  31. Hiyama T, Tanaka T, Endo S, Komine K, Kudo T, Kobayashi H, Shiokawa Y (2010) Angiogenesis in atherosclerotic plaque obtained from carotid endarterectomy: association between symptomatology and plaque morphology. Neurol Med Chir (Tokyo) 50(12):1056–1061

    Article  Google Scholar 

  32. Aiello LP, Avery RL, Arrigg PG, Keyt BA, Jampel HD, Shah ST et al (1994) Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med 331(22):1480–1487

    Article  CAS  PubMed  Google Scholar 

  33. Kakehashi A, Inoda S, Mameuda C, Kuroki M, Jono T, Nagai R et al (2008) Relationship among VEGF, VEGF receptor, AGEs, and macrophages in proliferative diabetic retinopathy. Diabetes Res Clin Pract 79(3):438–445

    Article  CAS  PubMed  Google Scholar 

  34. Nalluri SR, Chu D, Keresztes R, Zhu X, Wu S (2008) Risk of venous thromboembolism with the angiogenesis inhibitor bevacizumab in cancer patients: a meta-analysis. JAMA 300:2277–2285

    Article  CAS  PubMed  Google Scholar 

  35. Ranpura V, Hapani S, Chuang J, Wu S (2010) Risk of cardiac ischemia and arterial thromboembolic events with the angiogenesis inhibitor bevacizumab in cancer patients: a meta-analysis of randomized controlled trials. Acta Oncol 49:287–297

    Article  CAS  PubMed  Google Scholar 

  36. Daher IN, Yeh ET (2008) Vascular complications of selected cancer therapies. Nat Clin Pract Cardiovasc Med 5:797–805

    Article  CAS  PubMed  Google Scholar 

  37. Menon SP, Rajkumar SV, Lacy M, Falco P, Palumbo A (2008) Thromboembolic events with lenalidomide-based therapy for multiple myeloma. Cancer 112:1522–1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lee S, Chen TT, Barber CL, Jordan MC, Murdock J, Desai S et al (2007) Autocrine VEGF signaling is required for vascular homeostasis. Cell 130(4):691–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kamba T, Tam BY, Hashizume H, Haskell A, Sennino B, Mancuso MR et al (2006) VEGF-dependent plasticity of fenestrated capillaries in the normal adult microvasculature. Am J Physiol Heart Circ Physiol 290(2):H560–H576

    Article  CAS  PubMed  Google Scholar 

  40. Izumiya Y, Shiojima I, Sato K, Sawyer DB, Colucci WS, Walsh K (2006) Vascular endothelial growth factor blockade promotes the transition from compensatory cardiac hypertrophy to failure in response to pressure overload. Hypertension 47(5):887–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Van Royen N, Piek JJ, Schaper W, Bode C, Buschmann I (2001) Arteriogenesis: mechanisms and modulation of collateral artery development. J Nucl Cardiol 8:687–693

    Article  PubMed  Google Scholar 

  42. Heil M, Eitenmüller I, Schmitz-Rixen T, Schaper W (2006) Arteriogenesis versus angiogenesis: similarities and differences. J Cell Mol Med 10(1):45–55

    Article  CAS  PubMed  Google Scholar 

  43. Chen CH, Walterscheid JP (2006) Plaque angiogenesis versus compensatory arteriogenesis in atherosclerosis. Circ Res 99:787–789

    Article  CAS  PubMed  Google Scholar 

  44. Ribatti D, Nico B, Vacca A, Roncali L, Dammacco F (2002) Endothelial cell heterogeneity and organ specificity. J Hematother Stem Cell Res 11:81–90

    Article  PubMed  Google Scholar 

  45. Owman C, Hardebo JE (1988) Functional heterogeneity of cerebrovascular endothelium. Brain Behav Evol 32:65–75

    Article  CAS  PubMed  Google Scholar 

  46. Auerbach R (1992) Endothelial cell heterogeneity: its role as a determinant of selective metastasis. In: Simionescu N, Simionescu M (eds) Endothelial cell dysfunctions. Plenum Press, New York, pp 427–437

    Chapter  Google Scholar 

  47. Belloni PN, Carney DH, Nicolson GL (1992) Organ-derived microvessel endothelial cells exhibit differential responsiveness to thrombin and other growth factors. Microvasc Res 43:20–45

    Article  CAS  PubMed  Google Scholar 

  48. Chi JT, Chang HY, Haraldsen G, Jahnsen FL, Troyanskaya OG, Chang DS et al (2003) Endothelial cell diversity revealed by global expression profiling. Proc Natl Acad Sci U S A 100(19):10623–10628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Deng DX, Tsalenko A, Vailaya A, Ben-Dor A, Kundu R, Estay I et al (2006) Differences in vascular bed disease susceptibility reflect differences in gene expression response to atherogenic stimuli. Circ Res 98(2):200–208

    Article  CAS  PubMed  Google Scholar 

  50. Page C, Rose M, Yacoub M, Pigott R (1991) Antigenic heterogeneity of vascular endothelium. Am J Pathol 141:677–683

    Google Scholar 

  51. Aird WC, Edelberg JM, Weiler-Guettler H, Simmons WW, Smith TW, Rosenberg RD (1997) Vascular bed-specific expression of an endothelial cell is programmed by the tissue microenvironment. J Cell Biol 138(5):1117–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pettersson A, Nagy JA, Brown LF, Sundberg C, Morgan E et al (2000) Heterogeneity of the angiogenic response induced in different normal adult tissues by vascular permeability factor/vascular endothelial growth factor. Lab Investig 80:99–115

    Article  CAS  PubMed  Google Scholar 

  53. Simpson E, Linder CC, Sargent EE, Davisson MT, Mobraaten LE, Sharp JJ (1997) Genetic variation among 129 substrains and its importance for targeted mutagenesis in mice. Nat Genet 16:19–27

    Article  CAS  PubMed  Google Scholar 

  54. Griep AE, Krawcek J, Lee D, Liem A, Albert DM, Carabeo R et al (1998) Multiple genetic loci modify risk for retinoblastoma in transgenic mice. Invest Ophthalmol Vis Sci 39(13):2723–2732

    CAS  PubMed  Google Scholar 

  55. Thurston G, Murphy T, Baluk P, Lindsey JR, MacDonald DM (1998) Angiogenesis in mice with chronic airway inflammation: strain-dependent differences. Am J Pathol 153:1099–1112

    Google Scholar 

  56. Rohan RM, Fernandez A, Udagawa T, Yuan J, D'Amato RJ (2000) Genetic heterogeneity of angiogenesis in mice. FASEB j 14:871–876

    CAS  PubMed  Google Scholar 

  57. Writing Group Members, Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M et al, American Heart Association Statistics Committee; Stroke Statistics Subcommittee (2016) Executive summary: heart disease and stroke statistics – 2016 update: a report from the American Heart Association. Circulation 133(4):447–54

    Google Scholar 

  58. Ware JA, Simons M (1997) Angiogenesis in ischemic heart disease. Nat Med 3:158–164

    Article  CAS  PubMed  Google Scholar 

  59. Zachary I, Morgan RD (2011) Therapeutic angiogenesis for cardiovascular disease: biological context, challenges, prospects. Heart 97:181–189

    Article  CAS  PubMed  Google Scholar 

  60. Henry TD, Annex BH, McKendall GR, Azrin MA, Lopez JJ, Giordano FJ et al (2003) The VIVA trial: vascular endothelial growth factor in ischemia for vascular angiogenesis. Circulation 107(10):1359–1365

    Article  CAS  PubMed  Google Scholar 

  61. Simons M, Annex BH, Laham RJ, Kleiman N, Henry T, Dauerman H et al (2002) Pharmacological treatment of coronary artery disease with recombinant fibroblast growth factor-2: double-blind, randomized, controlled clinical trial. Circulation 105(7):788–793

    Article  CAS  PubMed  Google Scholar 

  62. Chih S, Macdonald PS, McCrohon JA, Ma D, Moore J, Feneley MP et al (2012) Granulocyte colony stimulating factor in chronic angina to stimulate neovascularisation: a placebo controlled crossover trial. Heart 98(4):282–290

    Article  PubMed  Google Scholar 

  63. Brenner C, Adrion C, Grabmaier U, Theisen D, von Ziegler F, Leber A et al (2016) Sitagliptin plus granulocyte colony-stimulating factor in patients suffering from acute myocardial infarction: a double-blind, randomized placebo-controlled trial of efficacy and safety (SITAGRAMI trial). Int J Cardiol 205:23–30

    Article  PubMed  Google Scholar 

  64. Hedman M, Hartikainen J, Syvänne M, Stjernvall J, Hedman A, Kivelä A et al (2003) Safety and feasibility of catheter-based local intracoronary vascular endothelial growth factor gene transfer in the prevention of postangioplasty and in-stent restenosis and in the treatment of chronic myocardial ischemia: phase II results of the Kuopio angiogenesis trial (KAT). Circulation 107(21):2677–2683

    Article  CAS  PubMed  Google Scholar 

  65. Kastrup J, Jørgensen E, Rück A, Tägil K, Glogar D, Ruzyllo W et al (2005) Direct intramyocardial plasmid vascular endothelial growth factor-A165 gene therapy in patients with stable severe angina pectoris. A randomized double-blind placebo-controlled study: the Euroinject one trial. J Am Coll Cardiol 45(7):982–988

    Article  CAS  PubMed  Google Scholar 

  66. Lazarous DF, Shou M, Stiber JA, Dadhania DM, Thirumurti V, Hodge E, Unger EF (1997) Pharmacodynamics of basic fibroblast growth factor: route of administration determines myocardial and systemic distribution. Cardiovasc Res 36(1):78–85

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

None

Disclosures

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jawahar L. Mehta MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mathur, P., Pant, S., Deshmukh, A., Khattoor, A.J., Mehta, J.L. (2017). Angiogenesis and Atherosclerosis. In: Mehta, J., Mathur, P., Dhalla, N. (eds) Biochemical Basis and Therapeutic Implications of Angiogenesis. Advances in Biochemistry in Health and Disease, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-61115-0_16

Download citation

Publish with us

Policies and ethics