Elasticity and Rigidity Constructs and Ratings of Subjective Workload for Individuals and Groups

  • Stephen J. Guastello
  • David E. Marra
  • Anthony N. CorreroII
  • Maura Michels
  • Henry Schimmel
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 726)


Differences in workload inherent in a task have indirect and nonlinear relationships to performance differences because of coping strategies that people can deploy. Thus subjective ratings of workload have become commonplace for evaluating task workload. It has become apparent, however, that those ratings are affected by individual differences in personality and cognitive traits that correspond to a general theme of elasticity versus rigidity. Additionally, workload can originate from both the task and group dynamics when team work is involved. This study explored the relationship among 11 such constructs related to anxiety, coping, and fluid intelligence and ratings of individual and group workload. Participants were 360 undergraduates organized into 44 groups of different sizes who engaged in an emergency response (ER) simulation against one or two opponents. Regression analyses indicated that task conditions accounted for 7–10% of variance in individual workload ratings, and elasticity accounted for another 1–2% of the variance. Task conditions accounted for 2–4% of the variance in group-level workload ratings, and elasticity accounted for another 2–4%. Results support the continued investigation of elasticity-rigidity in the understanding of workload arising from the task and group dynamics.


Emotional Intelligence Canonical Correlation Analysis Canonical Variate Galvanic Skin Response Mental Demand 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Simon, H.A.: Administrative Behavior, 2nd edn. Littlefield Adams, Totowa (1957)Google Scholar
  2. 2.
    Broadbent, D.E.: Perception and Communication. Pergamon Press, Elmsford (1958)CrossRefGoogle Scholar
  3. 3.
    Kantowitz, B.H.: Channels and stages in human information processing: a limited analysis of theory and methodology. J. Math. Psychol. 29, 135–174 (1985). doi: 10.1016/0022-2496(85)90014-8 CrossRefzbMATHGoogle Scholar
  4. 4.
    Hancock, A., Warm, J.S.: A dynamic model of stress and sustained attention. Hum. Factors 31, 519–537 (1989). doi: 10.7771/2327-2937.1024 Google Scholar
  5. 5.
    Baddeley, A.: Working memory: looking back and looking forward. Nat. Rev. Neurosci. 4, 829–839 (2003). doi: 10.1038/nrnl201 CrossRefGoogle Scholar
  6. 6.
    Drag, L.L., Bieliauskas, L.A.: Contemporary review 2009: cognitive aging. J. Geriatr. Psychiatry 23, 85–93 (2010). doi: 10.1177/0891988709358590 Google Scholar
  7. 7.
    Oberauer, K., Kliegl, R.: A formal model of capacity limits in working memory. J. Mem. Lang. 55, 601–626 (2006). doi: 10.1016/jml.2006.08.009 CrossRefGoogle Scholar
  8. 8.
    Reuter-Lorenz, P.A., Cappell, K.A.: Neurocognitive aging and compensation hypothesis. Curr. Dir. Psychol. Sci. 17, 177–182 (2008). doi: 10.1111/j.1467-8721.2008.00570.x CrossRefGoogle Scholar
  9. 9.
    Schneider-Garces-, N.J., Gordon, B.A., Brumback-Pelz, C.R., Shin, E., Lee, Y., Sutton, B.P., Maclin, E.F., Gratton, G., Fabiani, M.: Span, CRUNCH, and beyond: working memory capacity and the aging brain. J. Cogn. Neurosci. 22, 655–669 (2009)CrossRefGoogle Scholar
  10. 10.
    Wickens, C.D.: Multiple resources and performance prediction. Theoret. Issues Ergon. Sci. 3, 159–177 (2002). doi: 10.1080/14639220210123806 CrossRefGoogle Scholar
  11. 11.
    Wickens, C.D.: Multiple resources and mental workload. Hum. Factors 50, 449–455 (2008). doi: 10.1518/001872008X288394 CrossRefGoogle Scholar
  12. 12.
    Ralph, J., Gray, W.D., Schoelles, M.J.: Squeezing the balloon: analyzing the unpredictable effects of cognitive workload. Proc. Hum. Factors Ergon. Soc. 54, 299–303 (2010). doi: 10.1177/154193121005400407 CrossRefGoogle Scholar
  13. 13.
    Hancock, P.A., Desmond, P.A. (eds.): Stress, Workload, and Fatigue. Lawrence Erlbaum Associates, Mahwah (2001)Google Scholar
  14. 14.
    Hancock, P.A., Szalma, J.L. (eds.): Performance Under Stress. Ashgate, Aldershot (2008)Google Scholar
  15. 15.
    Ackerman, P.L. (ed.): Cognitive Fatigue. American Psychological Association, Washington, DC (2011)Google Scholar
  16. 16.
    Matthews, G., Desmond, P.A., Neubauer, C., Hancock, P.A. (eds.): The Handbook of Operator Fatigue. Ashgate, Aldershot (2012)Google Scholar
  17. 17.
    Guastello, S.J., Boeh, H., Shumaker, C., Schimmels, M.: Catastrophe models for cognitive workload and fatigue. Theoret. Issues Ergon. Sci. 13, 586–602 (2012). doi: 10.1080/1463922X.2011.552131 CrossRefGoogle Scholar
  18. 18.
    Guastello, S.J., Boeh, H., Schimmels, M., Gorin, H., Huschen, S., Davis, E., Peters, N.E., Fabisch, M., Poston, K.: Cusp catastrophe models for cognitive workload and fatigue in a verbally-cued pictorial memory task. Hum. Factors 54, 811–825 (2012). doi: 10.1177/0018720812442537 CrossRefGoogle Scholar
  19. 19.
    Hart, S.G., Staveland, L.E.: Development of the NASA task load index (TLX): results of experimental and theoretical research. In: Hancock, P.A., Meshkati, N. (eds.) Human Workload, pp. 138–183. North-Holland, Amsterdam (1988). doi: 10.1016/S0166-4115(08)62386-9
  20. 20.
    Dey, A., Mann, D.D.: Sensitivity and diagnosticity of NASA-TLX and simplified SWAT to assess the mental workload associated with operating an agricultural sprayer. Ergonomics 53, 848–857 (2010). doi: 10.1080/00140139.2010.489960 CrossRefGoogle Scholar
  21. 21.
    Hart, S.G.: NASA-task load index (NASA-TLX) 20 years later. Proc. Hum. Factors Ergon. Soc. 50, 904–908 (2008). doi: 10.1177/154193120605000909 CrossRefGoogle Scholar
  22. 22.
    Warm, J.S., Dember, W.N., Hancock, P.A.: Vigilance and workload in automated systems. In: Parasuraman, R., Mouloua, M. (eds.) Automation and Human Performance: Theory and Applications, pp. 183–200. Lawrence Erlbaum Associates, Mahwah (1996)Google Scholar
  23. 23.
    Wierwille, W.W., Eggemeier, T.F.: Recommendations for mental workload measurement in test and evaluation environment. Hum. Factors 35, 263–281 (1993). doi: 10.1177/001872089303500205 Google Scholar
  24. 24.
    Guastello, S.J., Shircel, A., Malon, M., Timm, P.: Individual differences in the experience of cognitive workload. Theoret. Issues Ergon. Sci. 16, 20–52 (2015). doi: 10.1080/1463922X.2013.869371 CrossRefGoogle Scholar
  25. 25.
    Oron-Gilad, T., Szalma, J.L., Stafford, S.C., Hancock, P.A.: The workload and performance relationship in the real world: a study of police officers in a field shooting exercise. Int. J. Occup. Saf. Ergon. 14, 119–131 (2008). doi: 10.1080/10803548.2008.11076757 CrossRefGoogle Scholar
  26. 26.
    Guastello, S.J.: Catastrophe models for cognitive workload and fatigue: memory functions, multitasking, vigilance, financial decisions and risk. Proc. Hum. Factors Ergon. Soc. 58, 908–912 (2014). doi: 10.1177/1541931214581190 Google Scholar
  27. 27.
    Guastello, S.J. (ed.): Cognitive Workload and Fatigue in Financial Decision Making. Springer, New York (2016). doi: 10.1007/978-4-431-55312-0 zbMATHGoogle Scholar
  28. 28.
    Funke, G.J., Knott, B.A., Salas, E., Pavlas, D., Strang, A.J.: Conceptualization and measurement of team workload: a critical need. Hum. Factors 54, 36–51 (2012). doi: 10.1177/0018720811427901 CrossRefGoogle Scholar
  29. 29.
    Salas, E., Stevens, R., Gorman, J., Cooke, N.J., Guastello, S.J., von Davier, A.: What will quantitative measures of teamwork look like in 10 years? Proc. Hum. Factors Ergon. Soc. 59, 235–239 (2015). doi: 10.1177/1541931215591048 CrossRefGoogle Scholar
  30. 30.
    Helton, W.S., Funke, G.J., Knott, B.A.: Measuring workload in collaborative contexts: trait versus state perspectives. Hum. Factors 56, 322–332 (2014). doi: 10.1177/0018720813490727 CrossRefGoogle Scholar
  31. 31.
    Guastello, S.J.: Euler buckling in a wheelbarrow obstacle course: a catastrophe with complex lag. Behav. Sci. 30, 204–212 (1985). doi: 10.1002/bs.3830300405 MathSciNetCrossRefGoogle Scholar
  32. 32.
    Zeeman, E.C.: Catastrophe Theory: Selected Papers, 1972–1977. Addison-Wesley, Reading (1977)zbMATHGoogle Scholar
  33. 33.
    Guastello, S.J.: Catastrophe theory and its applications to I/O psychology. In: Cortina, J.M., Landis, R. (eds.) Frontiers of Methodology in Organizational Research, pp. 29–61. Routledge, New York (2013)Google Scholar
  34. 34.
    Guastello, S.J.: Human Factors Engineering and Ergonomics: A Systems Approach, 2nd edn. CRC Press, Boca Raton (2014)Google Scholar
  35. 35.
    Guastello, S.J.: Nonlinear dynamical systems for theory and research in ergonomics. Ergonomics 60, 167–193 (2017). doi: 10.1080/00140139.2016.1162851 CrossRefGoogle Scholar
  36. 36.
    Guastello, S.J., Gregson, R.A.M. (eds.): Nonlinear Dynamical Systems Analysis for the Behavioral Sciences Using Real Data. CRC Press/Taylor Francis, Boca Raton (2011). doi: 10.1080/00140139.2014.944325 Google Scholar
  37. 37.
    Guastello, S.J., Reiter, K., Malon, M.: Cognitive workload and fatigue in a vigilance dual task: miss errors, false alarms, and the impact of wearing biometric sensors while working. Nonlinear Dyn. Psychol. Life Sci. 20, 509–535 (2016)Google Scholar
  38. 38.
    Guastello, S.J., Boeh, H., Gorin, H., Huschen, S., Peters, N.E., Fabisch, M., Poston, K.: Cusp catastrophe models for cognitive workload and fatigue: a comparison of seven task types. Nonlinear Dyn. Psychol. Life Sci. 17, 23–47 (2013)Google Scholar
  39. 39.
    Guastello, S.J., Malon, M., Timm, P., Weinberger, K., Gorin, H., Fabisch, M., Poston, K.: Catastrophe models for cognitive workload and fatigue in a vigilance dual-task. Hum. Factors 56, 737–751 (2014). doi: 10.1177/0018720813508777 CrossRefGoogle Scholar
  40. 40.
    Guastello, S.J., Reiter, K., Malon, M., Timm, P., Shircel, A., Shaline, J.: Catastrophe models for cognitive workload and fatigue in N-back tasks. Nonlinear Dyn. Psychol. Life Sci. 19, 173–200 (2015)Google Scholar
  41. 41.
    Cox-Fuenzalida, L.-E., Swickert, R., Hittner, J.B.: Effects of neuroticism and workload history on performance. Pers. Individ. Differ. 36, 447–456 (2004). doi: 10.1016/S0191-8869(03)00108-9 CrossRefGoogle Scholar
  42. 42.
    Rose, C.L., Murphy, L.B., Byard, L., Nikzad, K.: The role of the big five personality factors in vigilance performance and workload. Eur. J. Pers. 16, 185–200 (2002). doi: 10.1002/per.451 CrossRefGoogle Scholar
  43. 43.
    Ein-Dor, T., Mikulincer, M., Doron, G., Shaver, P.R.: The attachment paradox: How can so many of us (the insecure ones) have no adaptive advantages. Perspect. on Psychol. Sci. 5, 123–141 (2010). doi: 10.1177/1745691610362349 CrossRefGoogle Scholar
  44. 44.
    Guastello, S.J., Lynn, M.: Catastrophe model of the accident process, safety climate, and anxiety. Nonlinear Dyn. Psychol. Life Sci. 18, 177–198 (2014)Google Scholar
  45. 45.
    Taylor, J.A.: A personality scale of manifest anxiety. J. Abnorm. Soc. Psychol. 48, 285–290 (1953). doi: 10.1037/h0056264 CrossRefGoogle Scholar
  46. 46.
    Thompson, H.L.: The Stress Effect: Why Smart Leaders Make Dumb Decisions – and What to Do About It. Jossey-Bass, San Francisco (2010)Google Scholar
  47. 47.
    Schutte, N.S., Malouf, J.M., Hall, L.E., Haggerty, D.J., Cooper, J.T., Golden, C.J., Dornheirn, L.: Development and validation of a measure of emotional intelligence. Pers. Individ. Differ. 25, 167–177 (1998). doi: 10.1016/S0191-8869(98)00001-4 CrossRefGoogle Scholar
  48. 48.
    Gerdes, K.E., Leitz, C.A., Segal, E.A.: Measuring empathy in the 21st century: development of an empathy index rooted in social cognitive neuroscience and social justice. Soc. Work Res. 35, 83–93 (2011). doi: 10.1093/swr/35.2.83 CrossRefGoogle Scholar
  49. 49.
    Lietz, C.A., Gerdes, K.E., Sun, F., Geiger, J.M., Wagaman, M.A., Segal, E.A.: The Empathy Assessment Index (EAI): a confirmatory factor analysis of a multidimensional model of empathy. J. Soc. Soc. Work Res. 2, 104–124 (2011). doi: 10.5243/jsswr.2011.6 CrossRefGoogle Scholar
  50. 50.
    Guastello, S.J.: Physiological synchronization in a vigilance dual task. Nonlinear Dyn. Psychol. Life Sci. 20, 49–80 (2016)Google Scholar
  51. 51.
    Kato, T.: Development of the coping flexibility scale: evidence for the coping flexibility hypothesis. J. Couns. Psychol. 59, 262–273 (2012). doi: 10.1037/0022-3514.37.6.822 CrossRefGoogle Scholar
  52. 52.
    Cantwell, R.H., Moore, P.J.: The development of measures of individual differences in self-regulatory control and their relationship to academic performance. Contemp. Educ. Psychol. 21, 500–517 (1996). doi: 10.1006/ceps.1996.0034 CrossRefGoogle Scholar
  53. 53.
    Kane, M.J., Engle, R.W.: The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: an individual-differences perspective. Psychon. Bull. Rev. 9, 617–671 (2002). doi: 10.3758/BF03196323 CrossRefGoogle Scholar
  54. 54.
    Pascual-Leone, J.: A mathematical model for the transition rule in Piaget’s developmental stages. Acta Psychologia 32, 301–345 (1970). doi: 10.1016/0001-6918(70)90108-3 CrossRefGoogle Scholar
  55. 55.
    Stamovlasis, D., Tsaparlis, G.: Applying catastrophe theory to an information-processing model of problem solving in science education. Sci. Educ. 96, 392–410 (2012). doi: 10.1002/sce.21002 CrossRefzbMATHGoogle Scholar
  56. 56.
    Hakstian, A.R., Cattell, R.B.: Higher-stratum ability structures on a basis of twenty primary abilities. J. Educ. Psychol. 70, 657–669 (1978). doi: 10.1037/0022-0663.70.5.657 CrossRefGoogle Scholar
  57. 57.
    Rittle-Johnson, B., Star, J.R., Durkin, K.: The importance of prior knowledge when comparing examples: Influences on conceptual and procedural knowledge of equation solving. J. Educ. Psychol. 101, 836–852 (2009). doi: 10.1037/a0016026 CrossRefGoogle Scholar
  58. 58.
    MacLean, M.H., Arnell, K.M.: Personality predicts temporal attention costs in the attentional blink paradigm. Psychon. Bull. Rev. 17, 556–562 (2010). doi: 10.3758/PBR.17.4.556 CrossRefGoogle Scholar
  59. 59.
    Costa, P.T., McCrae, R.R.: Four ways five factors are basic. Pers. Individ. Differ. 13, 653–665 (1992). doi: 10.1016/0191-8869(92)90236-I CrossRefGoogle Scholar
  60. 60.
    Cattell, H.E.P.: Development of the 16PF fifth edition. In: Conn, S.R., Rieke, M.L. (eds.) 16PF Fifth Edition: Technical Manual, pp. 1–20. Institute for Personality and Ability Testing, Champaign (1994)Google Scholar
  61. 61.
    Guastello, S.J., Marra, D.E.: External validity and factor structure of individual and group workload ratings: the potential influence of self-organizing processes (2016, manuscript under journal review)Google Scholar
  62. 62.
    Sellers, J., Helton, W.S., Näswall, K., Funke, G.J., Knott, B.A.: Development of the team workload questionnaire (TWLQ). Proc. Hum. Factors Ergon. Soc. 58, 989–993 (2014). doi: 10.1177/1541931214581207 CrossRefGoogle Scholar
  63. 63.
    Abich IV, J., Reinerman-Jones, L., Matthews, G.: Impact of three task demand factors on simulated unmanned system intelligence, surveillance, and reconnaissance operations. Ergonomics (2016, in press).  10.1080/00140139.2016.1216171
  64. 64.
    Sanjram, P.K., Gupta, M.: Task difficulty and time constraint in programmer multitasking: an analysis of prospective memory performance and cognitive workload. Int. J. Green Comput. 4, 35–37 (2013). doi: 10.4018/jgc.2013010103 CrossRefGoogle Scholar
  65. 65.
    Zander, A.: Making Groups Effective, 2nd edn. Jossey-Bass, San Francisco (1994)Google Scholar
  66. 66.
    Dennis, A.R., Valacich, J.S.: Computer brainstorms: More heads are better than one. J. Appl. Psychol. 78, 531–537 (1993). doi: 10.1037/0021-9010.78.4.531 CrossRefGoogle Scholar
  67. 67.
    Latané, B., Williams, K., Harkins, S.: Many hands make light the work: the cases and consequences of social loafing. J. Pers. Soc. Psychol. 37, 822–832 (1979). doi: 10.1037/0022-3514.37.6.822 CrossRefGoogle Scholar
  68. 68.
    Guastello, S.J.: Group dynamics: adaptability, coordination, and the emergence of leaders. In: Guastello, S.J., Koopmans, M., Pincus, D. (eds.) Chaos and Complexity in Psychology: Theory of Nonlinear Dynamical Systems, pp. 402–433. Cambridge University Press, New York (2009). doi: 10.1177/0018720809359003
  69. 69.
    Bonito, J.A., Hollingshead, A.B.: Participation in small groups. In: Burleson, B.R. (ed.) Communications Yearbook, vol. 20, pp. 227–261. Sage, Thousand Oaks (1997). doi: 10.1080/23808985.1997.11678943
  70. 70.
    Conrad, R.: Speed and load stress in a sensorimotor skill. Br. J. Ind. Med. 8, 1–7 (1951)Google Scholar
  71. 71.
    Kantowitz, B., Sorkin, D.: Human Factors: Understanding People-System Relationships. Wiley, New York (1983). doi: 10.1037/a0027770 Google Scholar
  72. 72.
    Szalma, J.L., Teo, G.W.L.: Spatial and temporal task characteristics as stress: a test of the dynamic adaptability theory of stress, workload, and performance. Acta Physiol. 139, 471–485 (2012). doi: 10.1016/j.actpsy.2011.12.009 Google Scholar
  73. 73.
    Prigogine, I., Stengers, I.: Order Out of Chaos: Man’s New Dialog with Nature. Bantam, New York (1984). doi: 10.1063/1.2813716 Google Scholar
  74. 74.
    Goldstein, J.: Emergence in complex systems. In: Allen, P., Maguire, S., McKelvey, B. (eds.) The Sage Handbook of Complexity and Management, pp. 65–78. Sage, Thousand Oaks (2011)Google Scholar
  75. 75.
    Guastello, S.J., Liebovitch, L.S.: Introduction to nonlinear dynamics and complexity. In: Guastello, S.J., Koopmans, M., Pincus, D. (eds.) Chaos and Complexity in Psychology: Theory of Nonlinear Dynamical Systems, pp. 1–40. Cambridge University Press, New York (2009). doi: 10.1017/CBO9781139058544.002
  76. 76.
    Sawyer, R.: Social Emergence: Societies as Complex Systems. Cambridge University Press, New York (2005). doi: 10.1017/CBO9780511734892 CrossRefGoogle Scholar
  77. 77.
    Arrow, H., McGrath, J.E., Berdahl, J.L.: Small Groups as Complex Systems: Formation, Coordination, Development, and Adaptation. Sage, Thousand Oaks (2000)Google Scholar
  78. 78.
    Poole, M.S.: Decision development in small groups I: a comparison of two models. Commun. Monogr. 48, 1–24 (1981). doi: 10.1080/03637758109376044 CrossRefGoogle Scholar
  79. 79.
    Gersick, C.J.G.: Time and transition in work teams: toward a new model of group development. Acad. Manag. J. 31, 9–41 (1988). doi: 10.2307/256496 CrossRefGoogle Scholar
  80. 80.
    Claypoole, V.L., Szalma, J.L.: Social norms and cognitive performance: a look at the vigilance decrement in the presence of supervisors. Proc. Hum. Factors Ergon. Soc. 59, 1012–1016 (2015). doi: 10.1177/1541931215591288 CrossRefGoogle Scholar
  81. 81.
    Guastello, S.J., Marra, D.E., Perna, C., Castro, J., Gomez, M., Peressini, A.F.: Physiological synchronization in emergency response teams: subjective workload, drivers and empaths. Nonlinear Dyn. Psychol. Life Sci. 20, 223–270 (2016)Google Scholar
  82. 82.
    Simulation Productions, Inc.: The Creature that Ate Sheboygan! Wreak Havoc with the Monster of Your Choice. Author, New York (1979)Google Scholar
  83. 83.
    Guastello, S.J., Bond Jr., R.W.: Coordination learning in Stag Hunt games with application to emergency management. Nonlinear Dyn. Psychol. Life Sci. 8, 345–374 (2004)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Stephen J. Guastello
    • 1
  • David E. Marra
    • 1
  • Anthony N. CorreroII
    • 1
  • Maura Michels
    • 1
  • Henry Schimmel
    • 1
  1. 1.Marquette UniversityMilwaukeeUSA

Personalised recommendations