Neuroergonomics Method for Measuring the Influence of Mental Workload Modulation on Cognitive State of Manual Assembly Worker

  • Pavle Mijović
  • Miloš Milovanović
  • Vanja Ković
  • Ivan Gligorijević
  • Bogdan Mijović
  • Ivan Mačužić
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 726)


In this study, we simulated a manual assembly operation, where participants were exposed to two distinct ways of information presentation, reflecting two task conditions (monotonous and more demanding task condition). We investigated how changes in mental workload (MWL) modulate the P300 component of event-related potentials (ERPs), recorded from wireless electroencephalography (EEG), reaction times (RTs) and quantity of task unrelated movements (retrieved from Kinect). We found a decrease in P300 amplitude and an increase in the quantity of the task unrelated movements, both indicating a decrease in attention level during a monotonous task (lower MWL). During the more demanding task, where a slightly higher MWL was imposed, these trends were not obvious. RTs did not show any dependency on the level of workload applied. These results suggest that a wireless EEG, but also Kinect, can be used to measure the influence of MWL variation on the cognitive state of the workers.


Wireless EEG Kinect Reaction times Mental workload Attention 



This research is financed under EU—FP7 Marie Curie Actions Initial Training Net-works—FP7-PEOPLE-2011-ITN, project name “Innovation Through Human Factors in Risk Analysis and Management (InnHF)”, project number: 289837.


  1. 1.
    Tang, A., Owen, C., Biocca, F., Mou, W.: Comparative effectiveness of augmented reality in object assembly. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 73–80. ACM (2003)Google Scholar
  2. 2.
    Larue, G.S., Rakotonirainy, A., Pettitt, A.N.: Driving performance impairments due to hypovigilance on monotonous roads. Acc. Anal. Prev. 43(6), 2037–2046 (2011)CrossRefGoogle Scholar
  3. 3.
    Young, M.S., Stanton, N.A.: Attention and automation: new perspectives on mental underload and performance. Theoret. Issues Ergon. Sci. 3(2), 178–194 (2002)CrossRefGoogle Scholar
  4. 4.
    Desmond, P.A., Hoyes, T.W.: Workload variation, intrinsic risk and utility in a simulated air traffic control task: evidence for compensatory effects. Saf. Sci. 22(1), 87–101 (1996)CrossRefGoogle Scholar
  5. 5.
    Karwowski, W.: The discipline of human factors and ergonomics. In: Salvendy, G. (ed.) Handbook of Human Factors and Ergonomics, pp. 3–37. Wiley, Hoboken (2012)Google Scholar
  6. 6.
    Parasuraman, R.: Neuroergonomics: research and practice. Theoret. Issues Ergon. Sci. 4(1–2), 5–20 (2003)CrossRefGoogle Scholar
  7. 7.
    Parasuraman, R., Rizzo, M.: Introduction to neuroergonomics. In: Parasuraman, R., Rizzo, M. (eds.) Neuroergonomics: The Brain at Work, pp. 3–14. Oxford University Press, Oxford (2008)Google Scholar
  8. 8.
    Mehta, R.K., Parasuraman, R.: Neuroergonomics: a review of applications to physical and cognitive work. Front. Hum. Neurosci. 7(889), 1–10 (2013)Google Scholar
  9. 9.
    Mijović, P., Ković, V., De Vos, M., Mačužić, I., Jeremić, B., Gligorijević, I.: Benefits of instructed responding in manual assembly tasks: an ERP approach. Front. Hum. Neurosci. 10(171), 1–13 (2016)Google Scholar
  10. 10.
    Picton, T.W., Bentin, S., Berg, P., Donchin, E., Hillyard, S.A., Johnson, R., Miller, G.A., Ritter, W., Ruchkin, D.S., Rugg, M.D., Taylor, M.J.: Guidelines for using human event-related potentials to study cognition: recording standards and publication criteria. Psychophysiology 37(2), 127–152 (2000)CrossRefGoogle Scholar
  11. 11.
    Polich, J., Kok, A.: Cognitive and biological determinants of P300: an integrative review. Biol. Psychol. 41(2), 103–146 (1995)CrossRefGoogle Scholar
  12. 12.
    Polich, J.: Updating P300: an integrative theory of P3a and P3b. Clin. Neurophys. 118(10), 2128–2148 (2007)CrossRefGoogle Scholar
  13. 13.
    Causse, M., Peysakhovich, V., Fabre, E.F.: High working memory load impairs language processing during a simulated piloting task: an ERP and pupillometry study. Front. Hum. Neurosci. 10, 1–14 (2016)Google Scholar
  14. 14.
    Salthouse, T.A., Hedden, T.: Interpreting reaction time measures in between-group comparisons. J. Clin. Exp. Neuropsych. 24(7), 858–872 (2002)CrossRefGoogle Scholar
  15. 15.
    Luck, S.J., Woodman, G.F., Vogel, E.K.: Event-related potential studies of attention. Trends Cogn. Sci. 4(11), 432–440 (2000)CrossRefGoogle Scholar
  16. 16.
    Diego-Mas, J.A., Alcaide-Marzal, J.: Using Kinect™ sensor in observational methods for assessing postures at work. Appl. Ergon. 45(4), 976–985 (2013)CrossRefGoogle Scholar
  17. 17.
    Rogé, J., Pebayle, T., Muzet, A.: Variations of the level of vigilance and of behavioural activities during simulated automobile driving. Acc. Anal. Prev. 33(2), 181–186 (2001)CrossRefGoogle Scholar
  18. 18.
    Mijović, P., Milovanović, M., Ković, V., Mijović, B., Gligorijević, I., Minović, M., Mačužić, I.: Communicating the user state: introducing cognition-aware computing in industrial settings. Saf. Sci. (2017, in revision)Google Scholar
  19. 19.
    Gramann, K., Ferris, D.P., Gwin, J., Makeig, S.: Imaging natural cognition in action. Int. J. Psychophys. 91(1), 22–29 (2014)CrossRefGoogle Scholar
  20. 20.
    Delorme, A., Makeig, S.: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134(1), 9–21 (2004)CrossRefGoogle Scholar
  21. 21.
    De Vos, M., De Lathauwer, L., Van Huffel, S.: Spatially constrained ICA algorithm with an application in EEG processing. Sig. Proc. 91(8), 1963–1972 (2011)CrossRefzbMATHGoogle Scholar
  22. 22.
    Mijović, P., Ković, V., De Vos, M., Mačužić, I., Todorović, P., Jeremić, B., Gligorijević, I.: Towards continuous and real-time attention monitoring at work: reaction time versus brain response. Ergonomics 60, 1–14 (2016)Google Scholar
  23. 23.
    Awh, E., Jonides, J.: Overlapping mechanisms of attention and spatial working memory. Trends Cogn. Sci. 5(3), 119–126 (2001)CrossRefGoogle Scholar
  24. 24.
    Michalos, G., Makris, S., Rentzos, L., Chryssolouris, G.: Dynamic job rotation for workload balancing in human based assembly systems. CIRP J. Manuf. Sci. Technol. 2(3), 153–160 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Pavle Mijović
    • 1
  • Miloš Milovanović
    • 2
  • Vanja Ković
    • 3
  • Ivan Gligorijević
    • 1
  • Bogdan Mijović
    • 1
  • Ivan Mačužić
    • 4
  1. 1.mBrainTrain LCCBelgradeSerbia
  2. 2.IT Department, Faculty of Organizational SciencesUniversity of BelgradeBelgradeSerbia
  3. 3.Department for Psychology, Faculty of PhilosophyUniversity of BelgradeBelgradeSerbia
  4. 4.Department for Production Engineering, Faculty of EngineeringUniversity of KragujevacKragujevacSerbia

Personalised recommendations