Advertisement

Effect of Control-Display Compatibility on the Mental Workload of Submarine Helmsmen

  • Philippe Rauffet
  • Christine Chauvin
  • Chiara Nistico
  • Samantha Judas
  • Norbert Toumelin
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 726)

Abstract

The purpose of the study is to analyse the directional compatibility of control-display design and its effects on the mental workload of helmsmen. An experiment is then carried out on a simulator designed by a world leader in military naval shipbuilding. This experiment follows a unique scenario including four usual submarine maneuvers. It is achieved by two groups, each carrying out a perceptual-motor task on a specific steering control-display configuration, proposed by the naval shipbuilder (one with a standard numeric display and one with a new visual-spatial representation, both tasks controlled by the same joystick). The findings of this study show that the control-display compatibility produces increased mental workload when a direction-of-motion stereotype is violated (upward-forward relationship).

Keywords

Direction-of-motion stereotype Control-display compatibility Mental workload 

Notes

Acknowledgment

This paper is an adapted and shortened version of: Rauffet, P., Chauvin, C., Nistico, C., Judas, S., and Toumelin, N. (2016). Analysis of submarine steering: effects of cognitive and perceptual–motor requirements on the mental workload and performance of helmsmen. Cognition, Technology and Work, 18(4), 657–672.

References

  1. 1.
    Anzai, Y.: Cognitive control of real-time event-driven systems. Cogn. Sci. 8(3), 221–254 (1984)CrossRefGoogle Scholar
  2. 2.
    Beatty, J., Lucero-Wagoner, B.: The pupillary system. Handb. Psychophysiol. 2, 142–162 (2000)Google Scholar
  3. 3.
    Burgess-Limerick, R., Krupenia, V., Wallis, G., Pratim-Bannerjee, A., Steiner, L.: Directional control-response relationships for mining equipment. Ergonomics 53(6), 748–757 (2010)CrossRefGoogle Scholar
  4. 4.
    Byers, J.C., Bittner Jr., A.C., Hill, S.G.: Traditional and raw task load index (TLX) correlations: are paired comparisons necessary? In: Mital, A. (ed.) Advances in Industrial Ergonomics and Safety, pp. 481–485. Taylor & Francis, London (1989)Google Scholar
  5. 5.
    Cegarra, J., Chevalier, A.: The use of Tholos software for combining measures of mental workload: toward theoretical and methodological improvements. Behav. Res. Methods 40(4), 988–1000 (2008)CrossRefGoogle Scholar
  6. 6.
    Chan, A.H.S., Hoffmann, E.R.: Movement compatibility for configurations of displays located in three cardinal orientations and ipsilateral, contralateral and overhead controls. Appl. Ergon. 43(1), 128–140 (2012)CrossRefGoogle Scholar
  7. 7.
    Chen, S., Epps, J.: Using task-induced pupil diameter and blink rate to infer cognitive load. Hum.-Comput. Interact. 29(4), 390–413 (2014)CrossRefGoogle Scholar
  8. 8.
    Dehais, F., Causse, M., Pastor, J.: Embedded eye tracker in a real aircraft: new perspectives on pilot/aircraft interaction monitoring. In: Proceedings from the 3rd International Conference on Research in Air Transportation. Federal Aviation Administration Fairfax, March 2008Google Scholar
  9. 9.
    de Greef, T., Lafeber, H., van Oostendorp, H., Lindenberg, J.: Eye movement as indicators of mental workload to trigger adaptive automation. In: Schmorrow, D.D., Estabrooke, I.V., Grootjen, M. (eds.) FAC 2009. LNCS, vol. 5638, pp. 219–228. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-02812-0_26 CrossRefGoogle Scholar
  10. 10.
    Engstrom, J., Johansson, E., Ostlund, J.: Effects of visual and cognitive load in real and simulated motorway driving. Trans. Res. 8, 97–120 (2005)Google Scholar
  11. 11.
    Hart, S., Staveland, L.: Development of NASA-TLX (Task Load Index): results of empirical and theoretical research. Adv. Psychol. 52, 139–183 (1988). ElsevierCrossRefGoogle Scholar
  12. 12.
    Hill, S.G., Iavecchia, H.P., Byers, J.C., Bittner Jr., A.C., Zaklade, A.L., Christ, R.E.: Comparison of four subjective workload rating scales. Hum. Factors 34(4), 429–439 (1992)Google Scholar
  13. 13.
    Jamson, A.H., Merat, N.: Surrogate in-vehicle information systems and driver behaviour: effects of visual and cognitive load in simulated rural driving. Trans. Res. Part F: Traffic Psychol. Behav. 8(2), 79–96 (2005)CrossRefGoogle Scholar
  14. 14.
    Marshall, S.P.: Identifying cognitive state from eye metrics. Aviat. Space Environ. Med. 78(5), B165–B175 (2007)Google Scholar
  15. 15.
    McLane, R.C., Wolf, J.D.: Symbolic and pictorial displays for submarine control. IEEE Trans. Hum. Factors Electron. 2, 148–158 (1967)CrossRefGoogle Scholar
  16. 16.
    McRuer, D.T., Allen, R.W., Weir, D.H., Klein, R.H.: New results in driver steering control models. Hum. Factors: J. Hum. Factors Ergon. Soc. 19(4), 381–397 (1977)Google Scholar
  17. 17.
    Nilsson, R., Gärling, T., Lützhöft, M.: An experimental simulation study of advanced decision support system for ship navigation. Trans. Res. Part F: Traffic Psychol. Behav. 12(3), 188–197 (2009)CrossRefGoogle Scholar
  18. 18.
    Peters, B., Nilsson, L.: Modelling the driver in control. In: Cacciabue, C. (ed.) Modelling driver Behaviour in Automotive Environments, pp. 85–104. Springer, London (2007)CrossRefGoogle Scholar
  19. 19.
    Ranchet, M.: Effet de la maladie de Parkinson sur la conduite automobile – Implication des fonctions executives. Thèse de doctorat, Université de Lyon 2 (2011)Google Scholar
  20. 20.
    Recarte, M.A., Perez, E., Conchillo, A., Nunes, L.M.: Mental workload and visual impairment: differences between pupil, blink and subjective rating. Span. J. Psychol. 11, 374–385 (2008)Google Scholar
  21. 21.
    Reid, G.B., Nygren, T.E.: The subjective workload assessment technique: a scaling procedure for measuring mental workload. Adv. Psychol. 52, 185–218 (1988)CrossRefGoogle Scholar
  22. 22.
    Stanton, N.A., Bessell, K.: How a submarine returns to periscope depth: analysing complex socio-technical systems using Cognitive Work Analysis. Appl. Ergon. 45(1), 110–125 (2014)CrossRefGoogle Scholar
  23. 23.
    Temme, L.A., Still, D.L., Kolen, J.: OZ: a human-centered computing cockpit display. In: 45th Annual Conference of the IMTA, Pensacola, Florida (2003)Google Scholar
  24. 24.
    Veltman, J.A., Gaillard, A.W.K.: Physiological indices of workload in a simulated flight task. Biol. Psychol. 42(3), 323–342 (1996)CrossRefGoogle Scholar
  25. 25.
    Verney, J.: Pilotage intégré pour sous-marins. Navigation 43(171), 372–387 (1995)Google Scholar
  26. 26.
    Wickens, C.D., Vincow, M., Yeh, M.: Design Applications of Visual Spatial Thinking: The Importance of Frame of Reference. Cambridge University Press, Cambridge (2005)Google Scholar
  27. 27.
    Williams, K.W.: A Summary of Unmanned Aircraft Accident/incident Data: Human Factors Implications (Technical report DOT/FAA/AM-04/24). U.S. Department of Transportation, Federal Aviation Administration, Office of Aerospace Me, Washington, DC (2004)Google Scholar
  28. 28.
    Wilson, G.F.: An analysis of mental workload in pilots during flight using multiple psychophysiological measures. Int. J. Aviat. Psychol. 12(1), 3–18 (2002)CrossRefGoogle Scholar
  29. 29.
    Worringham, C.J., Beringer, D.B.: Directional stimulus-response compatibility: a test of three alternative principles. Ergonomics 41(6), 864–880 (1998)CrossRefGoogle Scholar
  30. 30.
    Zupanc, C.M., Burgess-Limerick, R.J., Wallis, G.: Performance consequences of alternating directional control-response compatibility: evidence from a coal mine shuttle car simulator. Hum. Factors 49(4), 629–636 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Philippe Rauffet
    • 1
  • Christine Chauvin
    • 1
  • Chiara Nistico
    • 1
  • Samantha Judas
    • 1
  • Norbert Toumelin
    • 2
  1. 1.Université Bretagne-Sud, Lab-STICC UMR CNRS 6285LorientFrance
  2. 2.DCNS GroupLorientFrance

Personalised recommendations