Skip to main content

OBDA for Log Extraction in Process Mining

  • Chapter
  • First Online:
Reasoning Web. Semantic Interoperability on the Web (Reasoning Web 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10370))

Included in the following conference series:

Abstract

Process mining is an emerging area that synergically combines model-based and data-oriented analysis techniques to obtain useful insights on how business processes are executed within an organization. Through process mining, decision makers can discover process models from data, compare expected and actual behaviors, and enrich models with key information about their actual execution. To be applicable, process mining techniques require the input data to be explicitly structured in the form of an event log, which lists when and by whom different case objects (i.e., process instances) have been subject to the execution of tasks. Unfortunately, in many real world set-ups, such event logs are not explicitly given, but are instead implicitly represented in legacy information systems. To apply process mining in this widespread setting, there is a pressing need for techniques able to support various process stakeholders in data preparation and log extraction from legacy information systems. The purpose of this paper is to single out this challenging, open issue, and didactically introduce how techniques from intelligent data management, and in particular ontology-based data access, provide a viable solution with a solid theoretical basis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Small and medium-sized enterprises.

  2. 2.

    http://tinyurl.com/ovedwx4.

  3. 3.

    Enterprise Resource Planning.

  4. 4.

    Customer Relationship Management.

  5. 5.

    Supply Chain Management.

  6. 6.

    http://tinyurl.com/ovedwx4.

  7. 7.

    http://www.processmining.org/prom/.

  8. 8.

    http://www.promtools.org/doku.php?id=rapidprom:home.

  9. 9.

    http://www.celonis.de.

  10. 10.

    https://fluxicon.com/disco/.

  11. 11.

    http://www.softwareag.com/nl/products/aris_platform/aris_controlling/aris_process_performance/overview/default.asp.

  12. 12.

    https://www.cs.upc.edu/~jcarmona/PMLAB/.

  13. 13.

    http://www.processmining.be/cobefra.

  14. 14.

    http://www.stereologic.com.

  15. 15.

    http://www.fujitsu.com/global/products/software/middleware/application-infrastructure/interstage/solutions/bpmgt/bpm/.

  16. 16.

    http://www.minitlabs.com.

  17. 17.

    http://www.my-invenio.com.

  18. 18.

    http://www.exeura.eu.

  19. 19.

    http://www.lexmark.com/en_us/products/software/workflow-and-case-management/process-mining.html.

  20. 20.

    https://www.qpr.com/products/qpr-processanalyzer.

  21. 21.

    http://www.snp-bpa.com.

  22. 22.

    http://www.win.tue.nl/ieeetfpm/doku.php.

  23. 23.

    We consider here the case of an information system consisting of a single relational data source. Multiple data sources can be wrapped by a federation tool and presented as a single source.

  24. 24.

    In \(\textit{DL-Lite}_{\mathcal {{A}}}\), features are actually called attributes. Here we use the term “feature” to avoid confusion with attributes of UML (see later).

  25. 25.

    See http://www.omg.org/spec/UML/2.5/ for the latest version of UML at the moment of writing.

  26. 26.

    If the roles of the association are not specified in the UML class diagram, we may use arbitrary fresh DL role names, each of which is identified by the name of the association and the component.

  27. 27.

    https://www.w3.org/TR/sparql11-overview/.

  28. 28.

    The formal counterpart of such an SQL query is a first-order logic (FOL) query with distinguished variables \(\vec {x}\).

  29. 29.

    http://d2rq.org.

  30. 30.

    http://www.dis.uniroma1.it/~mastro.

  31. 31.

    http://capsenta.com.

  32. 32.

    https://github.com/oeg-upm/morph-rdb.

  33. 33.

    http://ontop.inf.unibz.it.

  34. 34.

    http://protege.stanford.edu/.

  35. 35.

    http://www.xes-standard.org.

References

  1. Dumas, M., Rosa, M.L., Mendling, J., Reijers, H.A.: Fundamentals of Business Process Management. Springer, Heidelberg (2013)

    Book  Google Scholar 

  2. Weske, M.: Business Process Management - Concepts, Languages, Architectures, 2nd edn. Springer, Heidelberg (2012)

    Google Scholar 

  3. van der Aalst, W., et al.: Process mining manifesto. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM 2011. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28108-2_19

    Chapter  Google Scholar 

  4. van der Aalst, W.M.P.: Process Mining - Data Science in Action, 2nd edn. Springer, Heidelberg (2016)

    Google Scholar 

  5. IEEE Computational Intelligence Society: IEEE Standard for eXtensible Event Stream (XES) for Achieving Interoperability in Event Logs and Event Streams. IEEE Std 1849–2016 (2016). i–50

    Google Scholar 

  6. Poggi, A., Lembo, D., Calvanese, D., Giacomo, G., Lenzerini, M., Rosati, R.: Linking data to ontologies. In: Spaccapietra, S. (ed.) Journal on Data Semantics X. LNCS, vol. 4900, pp. 133–173. Springer, Heidelberg (2008). doi:10.1007/978-3-540-77688-8_5

    Chapter  Google Scholar 

  7. Calvanese, D., Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-Muro, M., Rosati, R.: Ontologies and databases: the DL-Lite approach. In: Tessaris, S., Franconi, E., Eiter, T., Gutierrez, C., Handschuh, S., Rousset, M.-C., Schmidt, R.A. (eds.) Reasoning Web 2009. LNCS, vol. 5689, pp. 255–356. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03754-2_7

    Chapter  Google Scholar 

  8. Calvanese, D., Cogrel, B., Komla-Ebri, S., Kontchakov, R., Lanti, D., Rezk, M., Rodriguez-Muro, M., Xiao, G.: Ontop: answering SPARQL queries over relational databases. Semant. Web J. 8(3), 471–487 (2017)

    Article  Google Scholar 

  9. Calvanese, D., Kalayci, T.E., Montali, M., Tinella, S.: Ontology-based data access for extracting event logs from legacy data: the onprom tool and methodology. In: Abramowicz, W. (ed.) BIS 2017. LNBIP, vol. 288, pp. 220–236. Springer, Heidelberg (2017). https://www.springer.com/us/book/9783319593357

  10. van der Aalst, W., Weijters, T., Maruster, L.: Workflow mining: discovering process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)

    Article  Google Scholar 

  11. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Process and deviation exploration with inductive visual miner. In: Proceedings of BPM Demo Sessions. CEUR Workshop Proceedings, vol. 1295, p. 46. CEUR-WS.org (2014). http://ceur-ws.org/

  12. Eck, M.L., Lu, X., Leemans, S.J.J., van der Aalst, W.M.P.: PM\(^2\): a process mining project methodology. In: Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.) CAiSE 2015. LNCS, vol. 9097, pp. 297–313. Springer, Cham (2015). doi:10.1007/978-3-319-19069-3_19

    Chapter  Google Scholar 

  13. Verbeek, H.M.W., Buijs, J.C.A.M., Dongen, B.F., van der Aalst, W.M.P.: XES, XESame, and ProM 6. In: Soffer, P., Proper, E. (eds.) CAiSE Forum 2010. LNBIP, vol. 72, pp. 60–75. Springer, Heidelberg (2011). doi:10.1007/978-3-642-17722-4_5

    Chapter  Google Scholar 

  14. Dongen, B.F., Medeiros, A.K.A., Verbeek, H.M.W., Weijters, A.J.M.M., van der Aalst, W.M.P.: The ProM framework: a new era in process mining tool support. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 444–454. Springer, Heidelberg (2005). doi:10.1007/11494744_25

    Chapter  Google Scholar 

  15. van der Aalst, W.M.P., Bolt, A., van Zelst, S.J.: RapidProM: Mine your processes and not just your data. CoRR Technical Report abs/1703.03740, arXiv.org e-Print archive, March 2017. http://arxiv.org/abs/1703.03740

  16. Günther, C.W., Rozinat, A.: Disco: discover your processes. In; Lohmann, N., Moser, S. (eds.) Proceedings of the Demonstration Track of the 10th International Conference on Business Process Management (BPM). CEUR Workshop Proceedings, vol. 940, pp. 40–44 (2012). http://ceur-ws.org/

  17. Günther, C.W.: XES Standard Definition Version 1.0. Technical report, Fluxicon Process Laboratories, November 2009. http://www.xes-standard.org

  18. van Dongen, B.F., van der Aalst, W.M.P.: A meta model for process mining data. In: Proceedings of EMOI - INTEROP. CEUR Workshop Proceedings, vol. 160. CEUR-WS.org (2005). http://ceur-ws.org/

  19. Günther, C.W., Verbeek, E.: XES Standard Definition Version 2.0. Technical report, Fluxicon Process Laboratories, March 2014. http://www.xes-standard.org

  20. Günther, C.W., Aalst, W.M.P.: A generic import framework for process event logs. In: Eder, J., Dustdar, S. (eds.) BPM 2006. LNCS, vol. 4103, pp. 81–92. Springer, Heidelberg (2006). doi:10.1007/11837862_10

    Chapter  Google Scholar 

  21. Bao, J., et al.: OWL 2 Web Ontology Language document overview, 2nd edn. W3C Recommendation, World Wide Web Consortium, December 2012. http://www.w3.org/TR/owl2-overview/

  22. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press (2003)

    Google Scholar 

  23. Calvanese, D.: Query answering over description logic ontologies. In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761, pp. 1–17. Springer, Cham (2014). doi:10.1007/978-3-319-11558-0_1

    Google Scholar 

  24. Vardi, M.Y.: The complexity of relational query languages. In: Proceedings of the 14th ACM SIGACT Symposium on Theory of Computing (STOC), pp. 137–146 (1982)

    Google Scholar 

  25. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and efficient query answering in description logics: The DL-Lite family. J. Autom. Reasoning 39(3), 385–429 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Data complexity of query answering in description logics. Artif. Intell. 195, 335–360 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2 Web Ontology Language profiles, 2nd edn. W3C Recommendation, World Wide Web Consortium, December 2012. http://www.w3.org/TR/owl2-profiles/

  28. Calvanese, D., Lenzerini, M., Nardi, D.: Unifying class-based representation formalisms. J. Artif. Intell. Res. 11, 199–240 (1999)

    MathSciNet  MATH  Google Scholar 

  29. Berardi, D., Calvanese, D., De Giacomo, G.: Reasoning on UML class diagrams. Artif. Intell. 168(1–2), 70–118 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley Publ. Co. (1995)

    Google Scholar 

  31. Antonioli, N., Castanò, F., Coletta, S., Grossi, S., Lembo, D., Lenzerini, M., Poggi, A., Virardi, E., Castracane, P.: Ontology-based data management for the Italian public debt. In: Proceedings of the 8th International Conference on Formal Ontology in Information Systems (FOIS). Frontiers in Artificial Intelligence and Applications, vol. 267, pp. 372–385. IOS Press (2014)

    Google Scholar 

  32. Gottlob, G., Kikot, S., Kontchakov, R., Podolskii, V.V., Schwentick, T., Zakharyaschev, M.: The price of query rewriting in ontology-based data access. Artif. Intell. 213, 42–59 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The combined approach to query answering in DL-Lite. In: Proceedings of the 12th International Conference on the Principles of Knowledge Representation and Reasoning (KR), pp. 247–257 (2010)

    Google Scholar 

  34. Rodriguez-Muro, M., Calvanese, D.: High performance query answering over DL-Lite ontologies. In: Proceedings of the 13th International Conference on the Principles of Knowledge Representation and Reasoning (KR), pp. 308–318 (2012)

    Google Scholar 

  35. Rodriguez-Muro, M., Rezk, M.: Efficient SPARQL-to-SQL with R2RML mappings. J. Web Semant. 33, 141–169 (2015)

    Article  Google Scholar 

  36. Syamsiyah, A., van Dongen, B.F., van der Aalst, W.M.P.: DB-XES: enabling process discovery in the large. In: Ceravolo, P., Guetl, C., Rinderle-Ma, S. (eds.) Proceedings of the 6th International Symposium on Data-driven Process Discovery and Analysis (SIMPDA). CEUR Workshop Proceedings, vol. 1757, pp. 63–77 (2016). http://ceur-ws.org/

  37. Jiménez-Ruiz, E., Kharlamov, E., Zheleznyakov, D., Horrocks, I., Pinkel, C., Skjæveland, M.G., Thorstensen, E., Mora, J.: BootOX: Bootstrapping OWL 2 Ontologies and R2RML Mappings from Relational Databases. In Villata, S., Pan, J.Z., Dragoni, M. (eds.) Proceedings of the 14th International Semantic Web Conference Posters & Demonstrations Track (ISWC). CEUR Workshop Proceedings, vol. 1486 (2015). http://ceur-ws.org/

Download references

Acknowledgements

This research has been partially supported by the Euregio IPN12 “KAOS: Knowledge-Aware Operational Support” project, which is funded by the “European Region Tyrol-South Tyrol-Trentino” (EGTC) under the first call for basic research projects, and by the UNIBZ internal project “OnProm (ONtology-driven PROcess Mining)”. We thank Wil van der Aalst for the interesting discussions and insights on the problem of extracting event logs from legacy information systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Montali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Calvanese, D., Kalayci, T.E., Montali, M., Santoso, A. (2017). OBDA for Log Extraction in Process Mining. In: Ianni, G., et al. Reasoning Web. Semantic Interoperability on the Web. Reasoning Web 2017. Lecture Notes in Computer Science(), vol 10370. Springer, Cham. https://doi.org/10.1007/978-3-319-61033-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61033-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61032-0

  • Online ISBN: 978-3-319-61033-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics