Advertisement

Integrating Relational Databases with the Semantic Web: A Reflection

  • Juan F. Sequeda
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10370)

Abstract

From the beginning it was understood that the success of the Semantic Web hinges on integrating the vast amount of data stored in Relational Databases. This manuscript reflects on the last 10 years of our research results to integrate Relational Databases with the Semantic Web. Since 2007, our research has led us to answer the following question: How and to what extent can Relational Databases be Integrated with the Semantic Web? The answer comes in two parts. We start by presenting how to get from Relational Databases to the Semantic Web via mappings, such as the W3C Direct Mapping and R2RML standards. Subsequently, we present how the Semantic Web can access Relational Databases. We finalize with how Relational Databases and Semantic Web technologies are being used practice for data integration and discuss open challenges.

Keywords

Relational Database SPARQL Query Triple Pattern Logical Table Blank Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abadi, D.J., Marcus, A., Madden, S.R., Hollenbach, K.: Scalable semantic web data management using vertical partitioning. In: Proceedings of the 33rd International Conference on Very Large Data Bases, pp. 411–422 (2007)Google Scholar
  2. 2.
    Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Reading (1995)zbMATHGoogle Scholar
  3. 3.
    Ahmed, R., Lee, A., Das, D.: Join predicate push-down optimizations. US Patent 7,945,562, May 17 2011Google Scholar
  4. 4.
    Allemang, D., Hendler, J.A.: Semantic Web for the Working Ontologist - Effective Modeling in RDFS and OWL, 2nd edn. Morgan Kaufmann, San Francisco (2011)Google Scholar
  5. 5.
    Angles, R., Gutierrez, C.: The expressive power of SPARQL. In: Sheth, A., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 114–129. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-88564-1_8 CrossRefGoogle Scholar
  6. 6.
    Arenas, M., Barceló, P., Libkin, L., Murlak, F.: Foundations of Data Exchange. Cambridge University Press, Cambridge (2014)zbMATHGoogle Scholar
  7. 7.
    Arenas, M., Bertails, A., Prud’hommeaux, E., Sequeda, J.: Direct mapping of relational data to RDF. W3C Recomendation, 27 September 2012. http://www.w3.org/TR/rdb-direct-mapping/
  8. 8.
    Azzaoui, K.: Scientific competency questions as the basis for semantically enriched open pharmacological space development. Drug Discov. Today 18, 843–852 (2013)CrossRefGoogle Scholar
  9. 9.
    Baader, F., Brandt, S., Lutz, C.: Pushing the el envelope. In: IJCAI (2005)Google Scholar
  10. 10.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  11. 11.
    Bizer, C., Schultz, A.: The Berlin SPARQL benchmark. Int. J. Semant. Web Inf. Syst. 5(2), 1–24 (2009)CrossRefGoogle Scholar
  12. 12.
    Blinkiewicz, M., Bąk, J.: SQuaRE: a visual approach for ontology-based data access. In: Li, Y.-F., Hu, W., Dong, J.S., Antoniou, G., Wang, Z., Sun, J., Liu, Y. (eds.) JIST 2016. LNCS, vol. 10055, pp. 47–55. Springer, Cham (2016). doi: 10.1007/978-3-319-50112-3_4 CrossRefGoogle Scholar
  13. 13.
    Brickley, D., Guha, R.: RDF vocabulary description language 1.0: RDF schema, W3C recommendation, February 2004Google Scholar
  14. 14.
    Broekstra, J., Kampman, A., Harmelen, F.: Sesame: a generic architecture for storing and querying RDF and RDF schema. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 54–68. Springer, Heidelberg (2002). doi: 10.1007/3-540-48005-6_7 CrossRefGoogle Scholar
  15. 15.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Data complexity of query answering in description logics. Artif. Intell. 195, 335–360 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Calvanese, D., Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and efficient query answering in description logics: the DL-Lite family. J. Autom. Reason. 39(3), 385–429 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: EQL-Lite: effective first-order query processing in description logics. In: IJCAI, pp. 274–279 (2007)Google Scholar
  18. 18.
    Chakravarthy, U.S., Grant, J., Minker, J.: Logic-based approach to semantic query optimization. ACM Trans. Database Syst. 15(2), 162–207 (1990)CrossRefGoogle Scholar
  19. 19.
    Chebotko, A., Lu, S., Fotouhi, F.: Semantics preserving SPARQL-to-SQL translation. Data Knowl. Eng. 68(10), 973–1000 (2009)CrossRefGoogle Scholar
  20. 20.
    Cheng, Q., Gryz, J., Koo, F., Leung, T.Y.C., Liu, L., Qian, X., Schiefer, K.B.: Implementation of two semantic query optimization techniques in DB2 universal database. In: VLDB, pp. 687–698 (1999)Google Scholar
  21. 21.
    Chong, E.I., Das, S., Eadon, G., Srinivasan, J.: An efficient SQL-based RDF querying scheme. In: Proceedings of the 31st International Conference on Very Large Data Bases, pp. 1216–1227 (2005)Google Scholar
  22. 22.
    Civili, C., Mora, J., Rosati, R., Ruzzi, M., Santarelli, V.: Semantic analysis of R2RML mappings for ontology-based data access. In: Ortiz, M., Schlobach, S. (eds.) RR 2016. LNCS, vol. 9898, pp. 25–38. Springer, Cham (2016). doi: 10.1007/978-3-319-45276-0_3 CrossRefGoogle Scholar
  23. 23.
    Corcho, Ó., Fernández-López, M., Gómez-Pérez, A.: Methodologies, tools and languages for building ontologies: where is their meeting point? Data Knowl. Eng. 46(1), 41–64 (2003)CrossRefGoogle Scholar
  24. 24.
    Cudré-Mauroux, P., et al.: NoSQL databases for RDF: an empirical evaluation. In: Alani, H., et al. (eds.) ISWC 2013. LNCS, vol. 8219, pp. 310–325. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-41338-4_20 CrossRefGoogle Scholar
  25. 25.
    Das, S., Sundara, S., Cyganiak, R.: R2RML: RDB to RDF mapping language. W3C Recomendation, 27 September 2012. http://www.w3.org/TR/r2rml/
  26. 26.
    Medeiros, L.F., Priyatna, F., Corcho, O.: MIRROR: automatic R2RML mapping generation from relational databases. In: Cimiano, P., Frasincar, F., Houben, G.-J., Schwabe, D. (eds.) ICWE 2015. LNCS, vol. 9114, pp. 326–343. Springer, Cham (2015). doi: 10.1007/978-3-319-19890-3_21 CrossRefGoogle Scholar
  27. 27.
    DeWitt, D.J.: The Wisconsin benchmark: past, present, and future. In: The Benchmark Handbook, pp. 119–165 (1991)Google Scholar
  28. 28.
    Donini, F., Lenzerini, M., Nardi, D., Nutt, W., Schaerf, A.: An epistemic operator for description logics. Artif. Intell. 100(1–2), 225–274 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Donini, F.M., Nardi, D., Rosati, R.: Description logics of minimal knowledge and negation as failure. ACM Trans. Comput. Log. 3(2), 177–225 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Elliott, B., Cheng, E., Thomas-Ogbuji, C., Ozsoyoglu, Z.M.: A complete translation from SPARQL into efficient SQL. In: Proceedings of the 2009 International Database Engineering & Applications Symposium, pp. 31–42 (2009)Google Scholar
  31. 31.
    Franke, C., Morin, S., Chebotko, A., Abraham, J., Brazier, P.: Distributed semantic web data management in HBase and MySQL cluster. In: Proceedings of the 2011 IEEE 4th International Conference on Cloud Computing, pp. 105–112 (2011)Google Scholar
  32. 32.
    Glimm, B., Hogan, A., Krotzsch, M., Polleres, A.: OWL-LD. http://semanticweb.org/OWLLD/
  33. 33.
    Gray, A.J., Gray, N., Ounis, I.: Can RDB2RDF tools feasibily expose large science archives for data integration? In: Aroyo, L., et al. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 491–505. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-02121-3_37 CrossRefGoogle Scholar
  34. 34.
    Grimm, S., Motik, B.: Closed world reasoning in the semantic web through epistemic operators. In: OWLED (2005)Google Scholar
  35. 35.
    Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: combining logic programs with description logic. In: WWW, pp. 48–57 (2003)Google Scholar
  36. 36.
    Gupta, A., Mumick, I.S., Views, M.: Techniques, Implementations, and Applications. MIT Press, Cambridge (1999)Google Scholar
  37. 37.
    Halevy, A.Y.: Answering queries using views: a survey. VLDB J. 10(4), 270–294 (2001)CrossRefzbMATHGoogle Scholar
  38. 38.
    Harris, S., Seaborne, A.: SPARQL 1.1 query language. W3C Recommendation, 21 March 2013. http://www.w3.org/TR/sparql11-query/
  39. 39.
    Hendler, J.: RDFS 3.0. In: W3C Workshop - RDF Next Steps (2010)Google Scholar
  40. 40.
    Hitzler, P., Gangemi, A., Janowicz, K., Krisnadhi, A., Presutti, V. (eds.): Ontology Engineering with Ontology Design Patterns - Foundations and Applications. Studies on the Semantic Web, vol. 25. IOS Press (2016)Google Scholar
  41. 41.
    Huang, J., Abadi, D.J., Ren, K.: Scalable SPARQL querying of large RDF graphs. PVLDB 4(11), 1123–1134 (2011)Google Scholar
  42. 42.
    Jiménez-Ruiz, E.: BootOX: practical mapping of RDBs to OWL 2. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9367, pp. 113–132. Springer, Cham (2015). doi: 10.1007/978-3-319-25010-6_7 CrossRefGoogle Scholar
  43. 43.
    Keet, C.M., Ławrynowicz, A.: Test-driven development of ontologies. In: Sack, H., Blomqvist, E., d’Aquin, M., Ghidini, C., Ponzetto, S.P., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9678, pp. 642–657. Springer, Cham (2016). doi: 10.1007/978-3-319-34129-3_39 CrossRefGoogle Scholar
  44. 44.
    Ladwig, G., Harth, A.: CumulusRDF: linked data management on nested key-value stores. In: 7th International Workshop on Scalable Semantic Web Knowledge Base Systems (SSWS 2011) (2011)Google Scholar
  45. 45.
    Lembo, D., Mora, J., Rosati, R., Savo, D.F., Thorstensen, E.: Mapping analysis in ontology-based data access: algorithms and complexity. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 217–234. Springer, Cham (2015). doi: 10.1007/978-3-319-25007-6_13 CrossRefGoogle Scholar
  46. 46.
    Lenzerini, M.: Data integration: a theoretical perspective. In: PODS, pp. 233–246 (2002)Google Scholar
  47. 47.
    Lutz, C., Seylan, İ., Toman, D., Wolter, F.: The combined approach to OBDA: taming role hierarchies using filters. In: Alani, H., et al. (eds.) ISWC 2013. LNCS, vol. 8218, pp. 314–330. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-41335-3_20 CrossRefGoogle Scholar
  48. 48.
    MahmoudiNasab, H., Sakr, S.: An experimental evaluation of relational RDF storage and querying techniques. In: Yoshikawa, M., Meng, X., Yumoto, T., Ma, Q., Sun, L., Watanabe, C. (eds.) DASFAA 2010. LNCS, vol. 6193, pp. 215–226. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-14589-6_22 CrossRefGoogle Scholar
  49. 49.
    Mehdi, A., Rudolph, S., Grimm, S.: Epistemic querying of OWL knowledge bases. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., Leenheer, P., Pan, J. (eds.) ESWC 2011. LNCS, vol. 6643, pp. 397–409. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-21034-1_27 CrossRefGoogle Scholar
  50. 50.
    Motik, B., Grau, B.C., Horrocks, I., Wu, Z., amd Carsten Lutz, A.F.: Owl 2 web ontology language profiles, 2nd edn., W3C recommendation, December 2012Google Scholar
  51. 51.
    Motik, B., Horrocks, I., Sattler, U.: Bridging the gap between OWL and relational databases. J. Web Semant. 7(2), 74–89 (2009)CrossRefGoogle Scholar
  52. 52.
    Muñoz, S., Pérez, J., Gutierrez, C.: Simple and efficient minimal RDFS. J. Web Semant. 7(3), 220–234 (2009)CrossRefGoogle Scholar
  53. 53.
    Neumann, T., Weikum, G.: The RDF-3x engine for scalable management of RDF data. VLDB J. 19(1), 91–113 (2010)CrossRefGoogle Scholar
  54. 54.
    Ortiz, M., Šimkus, M.: Reasoning and query answering in description logics. In: Eiter, T., Krennwallner, T. (eds.) Reasoning Web 2012. LNCS, vol. 7487, pp. 1–53. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33158-9_1 CrossRefGoogle Scholar
  55. 55.
    Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM Trans. Database Syst. 34(3), 16 (2009)CrossRefGoogle Scholar
  56. 56.
    Pinto, F.D., Lembo, D., Lenzerini, M., Mancini, R., Poggi, A., Rosati, R., Ruzzi, M., Savo, D.F.: Optimizing query rewriting in ontology-based data access. In: EDBT (2013)Google Scholar
  57. 57.
    Poggi, A., Lembo, D., Calvanese, D., Giacomo, G.D., Lenzerini, M., Rosati, R.: Linking data to ontologies. J. Data Semant. 10, 133–173 (2008)zbMATHGoogle Scholar
  58. 58.
    Priyatna, F., Corcho, Ó, Sequeda, J.: Formalisation and experiences of R2RML-based SPARQL to SQL query translation using Morph. In: 23rd International World Wide Web Conference, WWW 2014, Seoul, 7–11 April 2014, pp. 479–490 (2014)Google Scholar
  59. 59.
    Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF. W3C Recommendation 15 January 2008. http://www.w3.org/TR/rdf-sparql-query/
  60. 60.
    Ren, Y., Parvizi, A., Mellish, C., Pan, J.Z., Deemter, K., Stevens, R.: Towards competency question-driven ontology authoring. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8465, pp. 752–767. Springer, Cham (2014). doi: 10.1007/978-3-319-07443-6_50 CrossRefGoogle Scholar
  61. 61.
    Rodríguez-Muro, M., Kontchakov, R., Zakharyaschev, M.: Ontology-based data access: Ontop of databases. In: Alani, H., et al. (eds.) ISWC 2013. LNCS, vol. 8218, pp. 558–573. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-41335-3_35 CrossRefGoogle Scholar
  62. 62.
    Sequeda, J.: On the semantics of R2RML and its relationship with the direct mapping. In: Proceedings of the ISWC 2013 Posters & Demonstrations Track, Sydney, 23 October 2013, pp. 193–196 (2013)Google Scholar
  63. 63.
    Sequeda, J., Priyatna, F., Villazón-Terrazas, B.: Relational database to RDF mapping patterns. In: Proceedings of the 3rd Workshop on Ontology Patterns, Boston, 12 November 2012Google Scholar
  64. 64.
    Sequeda, J.F.: Integrating relational databases with the semantic web. IOS Press (2016). https://repositories.lib.utexas.edu/bitstream/handle/2152/30537/SEQUEDA-DISSERTATION-2015.pdf
  65. 65.
    Sequeda, J.F., Arenas, M., Miranker, D.P.: On directly mapping relational databases to RDF and OWL. In: WWW, pp. 649–658 (2012)Google Scholar
  66. 66.
    Sequeda, J.F., Arenas, M., Miranker, D.P.: OBDA: query rewriting or materialization? In practice, both!. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 535–551. Springer, Cham (2014). doi: 10.1007/978-3-319-11964-9_34 Google Scholar
  67. 67.
    Sequeda, J.F., Miranker, D.P.: Ultrawrap: SPARQL execution on relational data. J. Web Semant. 22, 19–39 (2013)CrossRefGoogle Scholar
  68. 68.
    Sequeda, J.F., Miranker, D.P.: Ultrawrap mapper: a semi-automatic relational database to RDF (RDB2RDF) mapping tool. In: Proceedings of the ISWC 2015 Posters & Demonstrations Track co-located with the 14th International Semantic Web Conference (ISWC-2015), Bethlehem, 11 October 2015Google Scholar
  69. 69.
    Sequeda, J.F., Tirmizi, S.H., Corcho, O., Miranker, D.P.: Survey of directly mapping SQL databases to the semantic web. Knowl. Eng. Review 26(4), 445–486 (2011)CrossRefGoogle Scholar
  70. 70.
    Shenoy, S.T., Ozsoyoglu, Z.M.: A system for semantic query optimization. In: SIGMOD, pp. 181–195 (1987)Google Scholar
  71. 71.
    Sicilia, Á., Nemirovski, G.: AutoMap4OBDA: automated generation of R2RML mappings for OBDA. In: Blomqvist, E., Ciancarini, P., Poggi, F., Vitali, F. (eds.) EKAW 2016. LNCS (LNAI), vol. 10024, pp. 577–592. Springer, Cham (2016). doi: 10.1007/978-3-319-49004-5_37 CrossRefGoogle Scholar
  72. 72.
    Tao, J., Sirin, E., Bao, J., McGuinness, D.L.: Integrity constraints in OWL. In: AAAI (2010)Google Scholar
  73. 73.
    Tirmizi, S.H., Sequeda, J., Miranker, D.: Translating SQL applications to the semantic web. In: Bhowmick, S.S., Küng, J., Wagner, R. (eds.) DEXA 2008. LNCS, vol. 5181, pp. 450–464. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-85654-2_40 CrossRefGoogle Scholar
  74. 74.
    Uschold, M., Gruninger, M.: Ontologies: principles, methods and applications. Knowledge Eng. Review 11(2), 93–136 (1996)CrossRefGoogle Scholar
  75. 75.
    Weaver, J., Hendler, J.A.: Parallel materialization of the finite RDFS closure for hundreds of millions of triples. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 682–697. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-04930-9_43 CrossRefGoogle Scholar
  76. 76.
    Weiss, C., Karras, P., Bernstein, A.: Hexastore: sextuple indexing for semantic web data management. Proc. VLDB Endow. 1(1), 1008–1019 (2008)CrossRefGoogle Scholar
  77. 77.
    Wilkinson, K.: Jena property table implementation. Technical report HPL-2006-140, HP Laboratories (2006)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.CapsentaAustinUSA

Personalised recommendations