Skip to main content

SCOUT: A Case-Based Reasoning Agent for Playing Race for the Galaxy

  • Conference paper
  • First Online:
Case-Based Reasoning Research and Development (ICCBR 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10339))

Included in the following conference series:

Abstract

Game AI is a well-established area of research. Classic strategy board games such as Chess and Go have been the subject of AI research for several decades, and more recently modern computer games have come to be seen as a valuable test-bed for AI methods and technologies. Modern board games, in particular those known as German-Style Board Games or Eurogames, are an interesting mid-point between these fields in terms of domain complexity, but AI research in this area is more sparse. This paper discusses the design, development and performance of a game-playing agent, called SCOUT, that uses the Case-Based Reasoning methodology as a means to reason and make decisions about game states in the Eurogame Race for the Galaxy. The purpose of this research is to explore the possibilities and limitations of Case-Based Reasoning within the domain of Race for the Galaxy and Eurogames in general.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aha, D.W., Molineaux, M., Ponsen, M.: Learning to win: case-based plan selection in a real-time strategy game. In: Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR 2005. LNCS, vol. 3620, pp. 5–20. Springer, Heidelberg (2005). doi:10.1007/11536406_4

    Chapter  Google Scholar 

  2. Aamodt, A., Plaza, E.: Case-based reasoning: foundational issues, methodological variations, and system approaches. AI Commun. 7(1), 39–59 (1994)

    Google Scholar 

  3. Auslander, B., Lee-Urban, S., Hogg, C., Muñoz-Avila, H.: Recognizing the enemy: combining reinforcement learning with strategy selection using case-based reasoning. In: Althoff, K.-D., Bergmann, R., Minor, M., Hanft, A. (eds.) ECCBR 2008. LNCS, vol. 5239, pp. 59–73. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85502-6_4

    Chapter  Google Scholar 

  4. Campbell, M., Hoane, A.J., Hsu, F.: Deep blue. Artif. Intell. 134(1), 57–83 (2002)

    Article  MATH  Google Scholar 

  5. Fogel, D.: Blondie24: Playing at the Edge of AI. Morgan Kaufmann, Burlington (2001)

    Google Scholar 

  6. Heyden, C.: Implementing a computer player for Carcassonne. Master’s thesis, Maastricht University (2009)

    Google Scholar 

  7. Jones, K.: Race for the Galaxy AI. www.keldon.net/rftg. Accessed 22 Oct 2016

  8. Laird, J., VanLent, M.: Human-level AI’s killer application: interactive computer games. AI Mag. 22(2), 15 (2001)

    Google Scholar 

  9. Lehmann, T.: Game Preview: Race for the Galaxy, 26 September 2008. Boardgame News

    Google Scholar 

  10. Molineaux, M., Aha, D.W.: TIELT: a testbed for gaming environments. In: AAAI 2005, p. 1690. AAAI Press (2005)

    Google Scholar 

  11. Powell, J., Hauff, B., Hastings, J.: Utilizing case-based reasoning and automatic case elicitation to develop a self-taught knowledgeable agent. In: Challenges in Game Artificial Intelligence: Papers from the AAAI Workshop (2004)

    Google Scholar 

  12. Reyes, O., Morell, C., Ventura, S.: Evolutionary feature weighting to improve the performance of multi-label lazy algorithms. Integr. Comput.-Aided Eng. 21(4), 339–354 (2014)

    Google Scholar 

  13. Richter, M.M., Weber, R.O.: Case-Based Reasoning. Springer, Heidelberg (2013)

    Book  Google Scholar 

  14. Rio Grande Games. Race for the Galaxy. http://riograndegames.com/Game/240-Race-for-the-Galaxy. Accessed 22 Oct 2016

  15. Rubin, J., Watson, I.: Investigating the effectiveness of applying case-based reasoning to the game of Texas Hold’em. In: FLAIRS Conference, pp. 417–422 (2007)

    Google Scholar 

  16. Schaeffer, J., Burch, N., Bjornsson, Y., Kishimoto, A., Muller, M., Lake, R., Lu, P., Sutphen, S.: Checkers is solved. Science 317(5844), 1518–1522 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Silver, D., Huang, A., Maddison, C., Guez, A., Sifre, L., Van den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M.: Mastering the game of Go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)

    Article  Google Scholar 

  18. Sinclair, D.: Using example-based reasoning for selective move generation in two player adversarial games. In: Smyth, B., Cunningham, P. (eds.) EWCBR 1998. LNCS, vol. 1488, pp. 126–135. Springer, Heidelberg (1998). doi:10.1007/BFb0056327

    Chapter  Google Scholar 

  19. Szita, I., Chaslot, G., Spronck, P.: Monte-carlo tree search in settlers of catan. In: Herik, H.J., Spronck, P. (eds.) ACG 2009. LNCS, vol. 6048, pp. 21–32. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12993-3_3

    Chapter  Google Scholar 

  20. Wender, S., Watson, I.: Combining case-based reasoning and reinforcement learning for unit navigation in real-time strategy game AI. In: Lamontagne, L., Plaza, E. (eds.) ICCBR 2014. LNCS, vol. 8765, pp. 511–525. Springer, Cham (2014). doi:10.1007/978-3-319-11209-1_36

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Watson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Woolford, M., Watson, I. (2017). SCOUT: A Case-Based Reasoning Agent for Playing Race for the Galaxy. In: Aha, D., Lieber, J. (eds) Case-Based Reasoning Research and Development. ICCBR 2017. Lecture Notes in Computer Science(), vol 10339. Springer, Cham. https://doi.org/10.1007/978-3-319-61030-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61030-6_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61029-0

  • Online ISBN: 978-3-319-61030-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics