Skip to main content

General Considerations

  • Chapter
  • First Online:
Book cover Small Volume Biopsy in Pediatric Tumors

Abstract

The time when an excisional biopsy was a standard procedure for the cyto/histopatologic diagnosis is over. Very few indications still remain for an excisional biopsy. Such a procedure is necessary for a diagnosis of bone tumors or for low-grade, presumed benign lesions. Small volume biopsy, which is a combination of fine-needle aspiration (FNA), core needle biopsy (CNB), and molecular analyses, offers the new horizons in this specific and complicated field of pathology [1]. It is preferred that specific molecular analyses be performed on aspirates, knowing that histological material obtained by core needle is very precious for standard histological and immunochistochemical techniques. Today, in experienced hands, this combination is an extremely powerful and rapid diagnostic method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fassina A, Klijanienko J. Multidisciplinary and multimodal diagnostic approach in paediatric tumors combining fine needle aspiration, core needle biopsy and ancillary techniques. Cytopathology. 2014;25:3–5.

    Article  CAS  PubMed  Google Scholar 

  2. Brisse HJ, Orbach D, Klijanienko J. Soft tissue tumors: imaging strategy. Pediatr Radiol. 2010;40:1019–28.

    Article  PubMed  Google Scholar 

  3. Barroca H, Bom-Sucesso M. Fine needle biopsy with cytology in paediatrics: the importance of a multidisciplinary approach and the role of ancillary techniques. Cytopathology. 2014;25:6–20.

    Article  CAS  PubMed  Google Scholar 

  4. Klijanienko J. Pediatric tumors. In: Layfield LJ, editor. Atlas of fine needle aspiration cytology. New Delhi: Jaypee; 2014. p. 338–53.

    Google Scholar 

  5. Klijanienko J, Freneaux P, Vielh P. Pediatric tumors. In: Domanski HA, editor. Atlas of fine needle aspiration cytology. London: Springer; 2014. p. 527–47.

    Chapter  Google Scholar 

  6. Papadopouli E, Michailidi E, Papadopoulou E, Paspalaki P, Vlahakis I, Kalmanti M. Cervical lymphadenopathy in childhood epidemiology and management. Pediatr Hematol Oncol. 2009;26:454–60.

    Article  PubMed  Google Scholar 

  7. Kelly KM. Hodgkin lymphoma in children and adolescents: improving the therapeutic index. Blood. 2015;126:2452–8.

    Article  CAS  PubMed  Google Scholar 

  8. Minard-Colin V, Brugières L, Reiter A, Cairo MS, Gross TG, Woessmann W, et al. Non-hodgkin lymphoma in children and adolescents: progress through effective collaboration, current knowledge, and challenges ahead. J Clin Oncol. 2015;3:2963–74.

    Article  CAS  Google Scholar 

  9. Rouge M-È, Brisse H, Helfre S, Teissier N, Freneaux P, Orbach D. Undifferentiated nasopharyngeal carcinoma in adolescent and children. Bull Cancer. 2011;98:337–45.

    PubMed  Google Scholar 

  10. Yalçin B, Ahmet Demir H, Yalçin B, et al. Primary chest tumors in children. International Society of Paediatric Oncology, SIOP XXXVII Annual Congress Meeting: Abstracts. Pediatr Blood Cancer. 2005;45:365–608. abstr P.D.079

    Article  Google Scholar 

  11. Giuseppucci C, Reusmann A, Giubergia V, Barrias C, Krüger A, Siminovich M, et al. Primary lung tumors in children: 24 years of experience at a referral center. Pediatr Surg Int. 2016;32:451–7.

    Article  PubMed  Google Scholar 

  12. Toma P, Granata C, Rossi A, Garaventa A. Multimodality imaging of Hodgkin disease and non-Hodgkin lymphomas in children. Radiographics. 2007;27:1335–54.

    Article  PubMed  Google Scholar 

  13. Atallah V, Honore C, Orbach D, Helfre S, Ducassou A, Thomas L, et al. Role of adjuvant radiation therapy after surgery for abdominal desmoplastic small round cell tumors. Int J Radiat Oncol Biol Phys. 2016;95:1244–53.

    Article  PubMed  Google Scholar 

  14. Brugières L, Branchereau S, Laithier V. Paediatric malignant liver tumours. Bull Cancer. 2012;99:219–28.

    PubMed  Google Scholar 

  15. Perilongo G, Shafford EA. Liver tumours. Eur J Cancer. 1999;35:953–9.

    Article  CAS  PubMed  Google Scholar 

  16. Meyers RL. Tumors of the liver in children. Surg Oncol. 2007;16:195–203.

    Article  PubMed  Google Scholar 

  17. Litten JB, Tomlinson GE. Liver tumors in children. Oncologist. 2008;13:812–20.

    Article  PubMed  Google Scholar 

  18. Irtan S, Galmiche-Rolland L, Elie C, Orbach D, Sauvanet A, Elias D, et al. Recurrence of solid pseudopapillary neoplasms of the pancreas: results of a nationwide study of risk factors and treatment modalities. Pediatr Blood Cancer. 2016;63:1515–21.

    Article  PubMed  Google Scholar 

  19. Dall’igna P, Cecchetto G, Bisogno G, Conte M, Chiesa PL, D’Angelo P, et al. Pancreatic tumors in children and adolescents: the Italian TREP project experience. Pediatr Blood Cancer. 2010;54:675–80.

    PubMed  Google Scholar 

  20. McHugh K. Renal and adrenal tumours in children. Cancer Imaging. 2007;7:41–51.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rha SE, Byun JY, Jung SE, Chun HJ, Lee HG, Lee JM. Neurogenic tumors in the abdomen: tumor types and imaging characteristics. Radiographics. 2003;23:29–43.

    Article  PubMed  Google Scholar 

  22. Matthay KK, Maris JM, Schleiermacher G, Nakagawara A, Mackall CL, Diller L, et al. Neuroblastoma. Nat Rev Dis Primer. 2016;2:16078.

    Article  Google Scholar 

  23. Evans AE, D’Angio GJ, Propert K, Anderson J, Hann HW. Prognostic factor in neuroblastoma. Cancer. 1987;59:1853–9.

    Article  CAS  PubMed  Google Scholar 

  24. Rubie H, Hartmann O, Michon J, Frappaz D, Coze C, Chastagner P, et al. N-Myc gene amplification is a major prognostic factor in localized neuroblastoma: results of the French NBL 90 study. Neuroblastoma Study Group of the Société Francaise d’Oncologie Pédiatrique. J Clin Oncol. 1997;15:1171–82.

    Article  CAS  PubMed  Google Scholar 

  25. Cecchetto G, Ganarin A, Bien E, Vorwerk P, Bisogno G, Godzinski J, et al. Outcome and prognostic factors in high-risk childhood adrenocortical carcinomas: a report from the European Cooperative Study Group on Pediatric Rare Tumors (EXPeRT). Pediatr Blood Cancer. 2017;64(6):E26368. https://doi.org/10.1002/pbc.26368.

    Article  CAS  Google Scholar 

  26. Dehner LP. Pediatric adrenocortical neoplasms: on the road to some clarity. Am J Surg Pathol. 2003;27(7):1005.

    Article  PubMed  Google Scholar 

  27. Rescorla FJ. Pediatric germ cell tumors. Semin Pediatr Surg. 2012;21:51–60.

    Article  PubMed  Google Scholar 

  28. Cecchetto G. Gonadal germ cell tumors in children and adolescents. J Indian Assoc Pediatr Surg. 2014;19:189–94.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sargar KM, Sheybani EF, Shenoy A, Aranake-Chrisinger J, Khanna G. Pediatric fibroblastic and myofibroblastic tumors: a pictorial review. Radiographics. 2016;36:1195–214.

    Article  PubMed  Google Scholar 

  30. Pastore G, Znaor A, Spreafico F, Graf N, Pritchard-Jones K, Steliarova-Foucher E. Malignant renal tumours incidence and survival in European children (1978-1997): report from the Automated Childhood Cancer Information System project. Eur J Cancer. 2006;42:2103–14.

    Article  PubMed  Google Scholar 

  31. Smith MA, Seibel NL, Altekruse SF, Ries LAG, Melbert DL, O’Leary M, et al. Outcomes for children and adolescents with cancer: challenges for the twenty-first century. J Clin Oncol. 2010;28:2625–34.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Warmann SW, Nourkami N, Frühwald M, Leuschner I, Schenk J-P, Fuchs J, et al. Primary lung metastases in pediatric malignant non-Wilms renal tumors: data from SIOP 93-01/GPOH and SIOP 2001/GPOH. Klin Pediatr. 2012;224:148–52.

    Article  CAS  Google Scholar 

  33. Bhatnagar S. Management of Wilms’ tumor: NWTS vs SIOP. J Indian Assoc Pediatr Surg. 2009;14:6–14.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Boutroux H, Cellier C, Mosseri V, Helfre S, Levy C, Desjardins L, et al. Orbital rhabdomyosarcoma in children: a favorable primary suitable for a less-invasive treatment strategy. J Pediatr Hematol Oncol. 2014;36:605–12.

    Article  PubMed  Google Scholar 

  35. Ferrari A, De Salvo GL, Brennan B, van Noesel MM, De Paoli A, Casanova M, et al. Synovial sarcoma in children and adolescents: the European Pediatric Soft Tissue Sarcoma Study Group prospective trial (EpSSG NRSTS 2005). Ann Oncol. 2015;26:567–72.

    Article  CAS  PubMed  Google Scholar 

  36. Meazza C, Bisogno G, Gronchi A, Fiore M, Cecchetto G, Alaggio R, et al. Aggressive fibromatosis in children and adolescents: the Italian experience. Cancer. 2010;116:233–40.

    CAS  PubMed  Google Scholar 

  37. Hernandez RK, Maegbaek ML, Liede A, Sørensen HT, Ehrenstein V. Bone metastases, skeletal-related events, and survival among children with cancer in Denmark. J Pediatr Hematol Oncol. 2014;36:528–33.

    Article  PubMed  Google Scholar 

  38. Arndt CA, Crist WM. Common musculoskeletal tumors of childhood and adolescence. N Engl J Med. 1999;341:342–52.

    Article  CAS  PubMed  Google Scholar 

  39. Birch JM, Pang D, Alston RD, Rowan S, Geraci M, Moran A, et al. Survival from cancer in teenagers and young adults in England, 1979–2003. Br J Cancer. 2008;99(5):830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Picci P. Osteosarcoma (osteogenic sarcoma). Orphanet J Rare Dis. 2007;2:6.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bernstein M, Kovar H, Paulussen M, Randall RL, Schuck A, Teot LA, et al. Ewing’s sarcoma family of tumors: current management. Oncologist. 2006;11:503–19.

    Article  CAS  PubMed  Google Scholar 

  42. Paulussen M, Bielack S, Jürgens H, Casali PG, ESMO Guidelines Working Group. Ewing’s sarcoma of the bone: ESMO clinical recommendations for diagnosis, treatment and follow-up. Ann Oncol. 2009;20(Suppl 4):140–2.

    PubMed  Google Scholar 

  43. Delattre O, Zucman J, Plougastel B, Desmaze C, Melot T, Peter M, et al. Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours. Nature. 1992;359:162–5.

    Article  CAS  PubMed  Google Scholar 

  44. Kransdorf MJ, Murphey MD. Radiologic evaluation of soft-tissue masses: a current perspective. AJR Am J Roentgenol. 2000;175:575–87.

    Article  CAS  PubMed  Google Scholar 

  45. Laor T. MR imaging of soft tissue tumors and tumor-like lesions. Pediatr Radiol. 2004;34:24–37.

    Article  PubMed  Google Scholar 

  46. De Schepper AM, De Beuckeleer L, Vandevenne J, Somville J. Magnetic resonance imaging of soft tissue tumors. Eur Radiol. 2000;10:213–23.

    Article  PubMed  Google Scholar 

  47. Brisse H, Orbach D, Klijanienko J, Freneaux P, Neuenschwander S. Imaging and diagnostic strategy of soft tissue tumors in children. Eur Radiol. 2006;16:1147–64.

    Article  PubMed  Google Scholar 

  48. Kransdorf MJ. Benign soft-tissue tumors in a large referral population: distribution of specific diagnoses by age, sex, and location. AJR Am J Roentgenol. 1995;164:395–402.

    Article  CAS  PubMed  Google Scholar 

  49. Kransdorf MJ. Malignant soft-tissue tumors in a large referral population: distribution of diagnoses by age, sex, and location. AJR Am J Roentgenol. 1995;164:129–34.

    Article  CAS  PubMed  Google Scholar 

  50. De Schepper A, De Beuckeleer L, Vandevenne J. Soft tissue tumors in pediatric patients. In: De Schepper A, editor. Imaging of soft tissue tumors. Heidelberg: Springer-Verlag; 2001. p. 433–52.

    Chapter  Google Scholar 

  51. Weiss SW, Goldblum JR. Enzinger and Weiss's soft tissue tumors. 5th ed. St. Louis: Mosby; 2008.

    Google Scholar 

  52. Siegel MJ. Magnetic resonance imaging of musculoskeletal soft tissue masses. Radiol Clin N Am. 2001;39:701–20.

    Article  CAS  PubMed  Google Scholar 

  53. Morley N, Omar I. Imaging evaluation of musculoskeletal tumors. Cancer Treat Res. 2014;162:9–29.

    Article  PubMed  Google Scholar 

  54. Murphey MD, Senchak LT, Mambalam PK, Logie CI, Klassen-Fischer MK, Kransdorf MJ. From the radiologic pathology archives: ewing sarcoma family of tumors: radiologic-pathologic correlation. Radiographics. 2013;33(3):803–31.

    Article  PubMed  Google Scholar 

  55. Kaste SC. Imaging pediatric bone sarcomas. Radiol Clin N Am. 2011;49(4):749–65.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Brisse H, Ollivier L, Edeline V, Pacquement H, Michon J, Glorion C, et al. Imaging of malignant tumours of the long bones in children: monitoring response to neoadjuvant chemotherapy and preoperative assessment. Pediatr Radiol. 2004;34(8):595–605.

    Article  PubMed  Google Scholar 

  57. Irtan S, Brisse HJ, Minard-Colin V, Schleiermacher G, Galmiche-Rolland L, Le Cossec C, et al. Image-defined risk factor assessment of neurogenic tumors after neoadjuvant chemotherapy is useful for predicting intra-operative risk factors and the completeness of resection. Pediatr Blood Cancer. 2015;62(9):1543–9.

    Article  PubMed  Google Scholar 

  58. Brisse HJ, McCarville MB, Granata C, Krug KB, Wootton-Gorges SL, Kanegawa K, et al. Guidelines for imaging and staging of neuroblastic tumors: consensus report from the International Neuroblastoma Risk Group Project. International Neuroblastoma Risk Group Project. Radiology. 2011;261(1):243–57.

    Article  PubMed  Google Scholar 

  59. Brisse HJ, Smets AM, Kaste SC, Owens CM. Imaging in unilateral Wilms tumour. Pediatr Radiol. 2008;38(1):18–29.

    Article  PubMed  Google Scholar 

  60. Owens CM, Brisse HJ, Olsen ØE, Begent J, Smets AM. Bilateral disease and new trends in Wilms tumour. Pediatr Radiol. 2008;38(1):30–9.

    Article  PubMed  Google Scholar 

  61. Dumoucel S, Gauthier-Villars M, Stoppa-Lyonnet D, Parisot P, Brisse H, Philippe-Chomette P, et al. Malformations, genetic abnormalities, and Wilms tumor. Pediatr Blood Cancer. 2014;61(1):140–4.

    Article  CAS  PubMed  Google Scholar 

  62. Anderson MW, Temple HT, Dussault RG, Kaplan PA. Compartmental anatomy: relevance to staging and biopsy of musculoskeletal tumors. AJR Am J Roentgenol. 1999;173:1663–71.

    Article  CAS  PubMed  Google Scholar 

  63. Toomayan GA, Robertson F, Major NM. Lower extremity compartmental anatomy: clinical relevance to radiologists. Skelet Radiol. 2005;34:307–13.

    Article  Google Scholar 

  64. Shapeero LG, Vanel D, Verstraete KL, Bloem JL. Fast magnetic resonance imaging with contrast for soft tissue sarcoma viability. Clin Orthop. 2002;397:212–27.

    Article  Google Scholar 

  65. Puri A, Shingade VU, Agarwal MG, Anchan C, Juvekar S, Desai S, et al. CT-guided percutaneous core needle biopsy in deep seated musculoskeletal lesions: a prospective study of 128 cases. Skelet Radiol. 2006;35:138–43.

    Article  CAS  Google Scholar 

  66. Liu JC, Chiou HJ, Chen WM, Chou YH, Chen TH, Chen W, et al. Sonographically guided core needle biopsy of soft tissue neoplasms. J Clin Ultrasound. 2004;32:294–8.

    Article  PubMed  Google Scholar 

  67. Konermann W, Wuisman P, Ellermann A, Gruber G. Ultrasonographically guided needle biopsy of benign and malignant soft tissue and bone tumors. J Ultrasound Med. 2000;19:465–71.

    Article  CAS  PubMed  Google Scholar 

  68. Shin HJ, Amaral JG, Armstrong D, Chait PG, Temple MJ, John P, et al. Image-guided percutaneous biopsy of musculoskeletal lesions in children. Pediatr Radiol. 2007;37:362–9.

    Article  PubMed  Google Scholar 

  69. Wakely PE Jr, Kardos TF, WJ F. Application of fine needle aspiration biopsy to pediatrics. Hum Pathol. 1988;19:1383–6.

    Article  PubMed  Google Scholar 

  70. Costa MJ, Campman SC, Davis RL, Howell LP. Fine-needle aspiration cytology of sarcoma: retrospective review of diagnostic utility and specificity. Diagn Cytopathol. 1996;15:23–32.

    Article  CAS  PubMed  Google Scholar 

  71. Willen H, Akerman M, Carlen B. Fine needle aspiration (FNA) in the diagnosis of soft tissue tumours; a review of 22 years experience. Cytopathology. 1995;6:236–47.

    Article  CAS  PubMed  Google Scholar 

  72. Kilpatrick SE, Bergman S, Pettenati MJ, Gulley ML. The usefulness of cytogenetic analysis in fine needle aspirates for the histologic subtyping of sarcomas. Mod Pathol. 2006;19(6):815–9.

    CAS  PubMed  Google Scholar 

  73. Klijanienko J, Pierron G, Sastre-Garau X, Theocharis S. Value of combined cytology and molecular information in the diagnosis of soft tissue tumors. Cancer Cytopathol. 2015;123(3):141–51.

    Article  PubMed  Google Scholar 

  74. Dal Cin P, Qian X, Cibas ES. The marriage of cytology and cytogenetics. Cancer Cytopathol. 2013;121(6):279–90.

    Article  CAS  PubMed  Google Scholar 

  75. Schmitt F, Barroca H. Role of ancillary studies in fine-needle aspiration from selected tumors. Cancer Cytopathol. 2012;120(3):145–60.

    Article  CAS  PubMed  Google Scholar 

  76. Zhang S, Gong Y. From cytomorphology to molecular pathology: maximizing the value of cytology of lymphoproliferative disorders and soft tissue tumors. Am J Clin Pathol. 2013;140(4):454–67.

    Article  PubMed  Google Scholar 

  77. VanderLaan PA. Molecular markers: implications for cytopathology and specimen collection. Cancer Cytopathol. 2015;123(8):454–60.

    Article  PubMed  Google Scholar 

  78. Schmitt FC, Vielh P. Molecular biology and cytopathology. Principles and applications. Ann Pathol. 2012;32(6):e57–63.

    Article  PubMed  Google Scholar 

  79. Krishnamurthy S. Applications of molecular techniques to fine-needle aspiration biopsy. Cancer. 2007;111(2):106–22.

    Article  PubMed  Google Scholar 

  80. Gazziero A, Guzzardo V, Aldighieri E, Fassina A. Morphological quality and nucleic acid preservation in cytopathology. J Clin Pathol. 2009;62(5):429–34.

    Article  CAS  PubMed  Google Scholar 

  81. Fowler LJ, Lachar WA. Application of immunohistochemistry to cytology. Arch Pathol Lab Med. 2008;132(3):373–83.

    PubMed  Google Scholar 

  82. Lin G, Doyle LA. An update on the application of newly described immunohistochemical markers in soft tissue pathology. Arch Pathol Lab Med. 2015;139(1):106–21.

    Article  PubMed  Google Scholar 

  83. Silowash R, Pantanowitz L, Craig FE, Simons JP, Monaco SE. Utilization of flow cytometry in pediatric fine-needle aspiration biopsy specimens. Acta Cytol. 2016;60(4):344–53.

    Article  CAS  PubMed  Google Scholar 

  84. Paul T, Gautam U, Rajwanshi A, Das A, Trehan A, Malhotra P, et al. Flow cytometric immunophenotyping and cell block immunocytochemistry in the diagnosis of primary non-Hodgkin's lymphoma by fine-needle aspiration: experience from a tertiary care center. J Cytol. 2014;31(3):123–30.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Chen Y, Savargaonkar P, Fuchs A, Wasserman P. Role of flow cytometry in the diagnosis of lymphadenopathy in children. Diagn Cytopathol. 2002;26(1):5–9.

    Article  CAS  PubMed  Google Scholar 

  86. Schmidt RL, Witt BL, Lopez-Calderon LE, Layfield LJ. The influence of rapid on site evaluation on the adequacy rate of fine-needle aspiration cytology: a systematic review and meta-analysis. Am J Clin Pathol. 2013;139(3):300–8.

    Article  PubMed  Google Scholar 

  87. Fassina A, Corradin M, Zardo D, Cappellesso R, Corbetti F, Fassan M. Role and accuracy of rapid on-site evaluation of CT-guided fine needle aspiration cytology of lung nodules. Cytopathology. 2011;22(5):306–12.

    Article  CAS  PubMed  Google Scholar 

  88. Alexandrow LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, et al. Signatures of mutational processes in human cancer. Nature. 2013;500:415–21.

    Article  CAS  Google Scholar 

  89. Bender JG, Verma A, Schiffman JD. Translating genomic discoveries to the clinic in pediatric oncology. Curr Opin Pediatr. 2015;27:34–43.

    Article  CAS  Google Scholar 

  90. Schultz KR, Carroll A, Heerema NA, Bowman WP, Aledo A, Slayton WB, et al. Long-term follow-up of imatinib in pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia: Children’s Oncology Group study AALL0031. Leukemia. 2014;28:1467–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Brondeur GM, Seeger RC, Scwab M, Varmus HE, Bishop JM. Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science. 1984;224:1121–4.

    Article  Google Scholar 

  92. Duffy DJ, Krstic A, Halasz M, Schwarzl T, Fey D, Iljin K, et al. Integrative omics reveals MYCN as a global suppressor of cellular signaling and enables network-based therapeutic target discovery in neuroblastoma. Oncotarget. 2015;6:43182–201.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Chen Y, Takita J, Choi YL, Kato M, Ohira M, Sanada M, et al. Oncogenic mutations in ALK kinase in neuroblastoma. Nature. 2008;455:971–4.

    Article  CAS  PubMed  Google Scholar 

  94. Janoueix-Lerosey I, Lequin D, Brugieres L, Ribeiro A, de Pontual L, Combaret V, et al. Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature. 2008;455:967–70.

    Article  CAS  PubMed  Google Scholar 

  95. Pugh TJ, Morozova O, Attiyeh EF, Asgharzadeh S, Wei JS, Auclair D, et al. The genetic landscape of high risk neuroblastoma. Nat Genet. 2013;45:279–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bosse K, Maris JM. Advances in the translational genomics of Neuroblastoma: from improving risk stratification and revealing novel biology to identifying actionable genomic alterations. Cancer. 2016;122:20–33.

    Article  CAS  PubMed  Google Scholar 

  97. Shern JF, Chen L, Chmielecki J, Wei JS, Patidar R, Rosenberg M, et al. Comprehensive genomic analysis of rhabdomyosarcoma reveals a landscape of alterations affecting a common genetic axis in fusion-positive and fusion-negative tumors. Cancer Discov. 2014;4:216–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Crompton BD, Stewart C, Taylor-Weiner A, Alexe G, Kurek KC, Calicchio ML, et al. The genomic landscape of pediatric Ewing sarcoma. Cancer Discov. 2014;4:1326–41.

    Article  CAS  PubMed  Google Scholar 

  99. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, et al. Intratumor heterogeneity and branched evolution by multiregion sequencing. N Engl J Med. 2012;366:883–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Schleiermacher G, Javanmardi N, Bernard V, Leroy Q, Cappo J, Rio Frio T, et al. Emergence of new ALK mutations at relapse of neuroblastoma. J Clin Oncol. 2014;32:2727–34.

    Article  CAS  PubMed  Google Scholar 

  101. Tirode F, Surdez D, Ma X, Parker M, Le Deley MC, Bahrami A, et al. Genomic landscape of Ewing sarcoma defines ann aggressive subtype with co-association of STAG2 and TP53 mutations. Cancer Discov. 2014;4:1342–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Xu J, Gong B, Wu L, Thakkar S, Hong H, Tong W. Comprehensive assessments of RNA-seq by the SEQC Consortium: FDA-Led efforts advance precision medicine. Pharmaceutics. 2016;8:8–15.

    Article  PubMed Central  Google Scholar 

  103. Pohar-Marinsek Z. Difficulties in diagnosing small round cell tumors of childhood from fine needle aspiration cytology samples. Cytopathology. 2008;19:67–79.

    Article  PubMed  Google Scholar 

  104. Barroca H. Fine needle biopsy and genetics, two allied weapons in the diagnosis, prognosis, and target therapeutics of solid pediatric tumors. Diagn Cytopathol. 2008;36:678–84.

    Article  PubMed  Google Scholar 

  105. Jereb B, Us-Krasovec M, Jereb M. Thin needle biopsy of solid tumors in children. Med Pediatr Oncol. 1978;4:213–20.

    Article  CAS  PubMed  Google Scholar 

  106. Rajwanshi A, Rao KL, Marwaha RK, Nijhawan VS, Gupta SK. Role of fine-needle aspiration cytology in childhood malignancies. Diagn Cytopathol. 1989;5:378–82.

    Article  CAS  PubMed  Google Scholar 

  107. Mathiot C, Decaudin D, Klijanienko J, Couturier J, Salomon A, Dumont J, et al. Fine-needle aspiration cytology combined with flow cytometry immunophenotyping is a rapid and accurate approach for the evaluation of suspicious superficial lymphoid lesions. Diagn Cytopathol. 2006;34:472–8.

    Article  PubMed  Google Scholar 

  108. Drut R, Drut RM, Pollono D, Tomarchio S, Ibáñez O, Urrutia A, et al. Fine needle aspiration biopsy in pediatric oncology patients (899 biopsies). J Pediatr Hematol Oncol. 2005;27:370–6.

    Article  PubMed  Google Scholar 

  109. Vlajnic T, Brisse HJ, Aerts I, Fréneaux P, Cellier C, Fabre M, Klijanienko J. Fine needle aspiration in the diagnosis and classification of hepatoblastoma: analysis of 21 new cases. Diagn Cytopathol. 2017;45:91–100.

    Google Scholar 

  110. Assi A, Patetta R, Fava C, Berti GL, Bacchioni AM, Cozzi L. Fine-needle aspiration of testicular lesions: report of 17 cases. Diagn Cytopathol. 2000;23:388–92.

    Article  CAS  PubMed  Google Scholar 

  111. Garcia-Solano J, Sanchez-Sanchez C, Montalban-Romero S, Sola-Pérez J, Pérez-Guillermo M. Fine needle aspiration (FNA) of testicular germ cell tumors; a 10-year experience in a community hospital. Cytopathology. 1998;9:248–62.

    Article  CAS  PubMed  Google Scholar 

  112. Klijanienko J, Caillaud JM, Lagacé R, Vielh P. Cytohistologic correlations in 56 synovial sarcomas in 36 patients. The Institut Curie experience. Diagn Cytopathol. 2002;27:96–102.

    Article  PubMed  Google Scholar 

  113. Barroca HM, Costa MJ, Carvalho JL. Cytologic profile of rhabdoid tumor of the kidney. A report of 3 cases. Acta Cytol. 2003;47:1055–8.

    Article  PubMed  Google Scholar 

  114. Thomson TA, Klijanienko J, Couturier J, Brisse H, Pierron G, Freneaux P, et al. Fine-needle aspiration of renal and extrarenal rhabdoid tumors: the experience of the Institut Curie regarding 20 tumors in 13 patients. Cancer Cytopathol. 2011;119:49–57.

    Google Scholar 

  115. Klijanienko J, Couturier J, Bourdeaut F, Fréneaux P, Ballet S, Brisse H, et al. Fine-needle aspiration as a diagnostic technique in 50 cases of primary Ewing sarcoma/peripheral neuroectodermal tumor. Institut Curie’s experience. Diagn Cytopathol. 2012;40:19–25.

    Article  PubMed  Google Scholar 

  116. Akhtar M, Ali MA, Sackey K, Sabbah R, Burgess A. Aspiration cytology of Wilms’ tumor: correlation of cytologic and histologic features. Diagn Cytopathol. 1989;5:269–74.

    Article  CAS  PubMed  Google Scholar 

  117. Fröstad B, Martinsson T, Tani E, Falkmer U, Darnfors C, Skoog L, et al. The use of fine-needle aspiration cytology in the molecular characterization of neuroblastoma in children. Cancer. 1999;87:60–8.

    Article  PubMed  Google Scholar 

  118. Klijanienko J, Couturier J, Brisse H, Pierron G, Fréneaux P, Berger F, et al. Diagnostic and prognostic information obtained on fine-needle aspirates of primary neuroblastic tumors: proposal for a cytology prognostic score. Cancer Cytopathol. 2011;119:411–23.

    Article  PubMed  Google Scholar 

  119. Klijanienko J, Lagacé R, editors. Soft tissue tumors: a multidisciplinary, decisional diagnostic approach. Hoboken: John Wiley and Sons Inc.; 2011.

    Google Scholar 

  120. Silverman JF, Joshi VV. FNA biopsy of small round cell tumors of childhood: cytomorphologic features and the role of ancillary studies. Diagn Cytopathol. 1994;10:245–55.

    Article  CAS  PubMed  Google Scholar 

  121. Akhtar M, Iqbal MA, Mourad W, Ali MA. Fine-needle aspiration biopsy diagnosis of small round cell tumors of childhood: a comprehensive approach. Diagn Cytopathol. 1999;21:81–91.

    Article  CAS  PubMed  Google Scholar 

  122. Layfield LJ, Liu K, Dodge RK. Logistic regression analysis of small round cell neoplasms: a cytologic study. Diagn Cytopathol. 1999;20:271–7.

    Article  CAS  PubMed  Google Scholar 

  123. Pohar-Marinsek Z, Anzic J, Jereb B. Topical topic: value of fine needle aspiration biopsy in childhood rhabdomyosarcoma: twenty-six years of experience in Slovenia. Med Pediatr Oncol. 2002;38:416–20.

    Article  PubMed  Google Scholar 

  124. Klijanienko J, Caillaud JM, Orbach D, Brisse H, Lagacé R, Vielh P, et al. Cyto-histological correlations in primary, recurrent and metastatic rhabdomyosarcoma. The Institut Curie experience. Diagn Cytopathol. 2007;35:482–7.

    Article  PubMed  Google Scholar 

  125. Klijanienko J, Colin P, Couturier J, Lagacé R, Fréneaux P, Pierron G, et al. Fine-needle aspiration in desmoplastic small round cell tumor: a report of 10 new tumors in 8 patients with clinicopathological and molecular correlations with review of the literature. Cancer Cytopathol. 2014;122:386–93.

    Article  PubMed  Google Scholar 

  126. Klijanienko J, Caillaud JM, Lagacé R. Cytohistologic correlations in schwannomas (neurilemmomas), including "ancient," cellular, and epithelioid variants. Diagn Cytopathol. 2006;34:517–22.

    Article  PubMed  Google Scholar 

  127. Klijanienko J, Caillaud JM, Lagacé R. Fine-needle aspiration of primary and recurrent dermatofibrosarcoma protuberans. Diagn Cytopathol. 2004;30:261–5.

    Article  PubMed  Google Scholar 

  128. Klijanienko J, Caillaud JM, Lagacé R, Vielh P. Cytohistologic correlations of 24 malignant peripheral nerve sheath tumor (MPNST) in 17 patients: the Institut Curie experience. Diagn Cytopathol. 2002;27:103–8.

    Article  PubMed  Google Scholar 

  129. Klijanienko J, Caillaud JM, Orbach D, Pacquement H, Lagacé R. Cyto-histological correlations in primary, recurrent and metastatic bone and soft tissue osteosarcoma. Institut Curie’s experience. Diagn Cytopathol. 2007;35(5):270.

    Article  PubMed  Google Scholar 

  130. Costa J, Klijanienko J, Desjardins L, Cassoux N, Machet MC, Pacquement H. Fine needle aspiration in intraocular metastasis from pleuropulmonary blastoma. A case report and a review of the literature. Diagn Cytopathol. 2017;45:156–60.

    Article  PubMed  Google Scholar 

  131. Steliarova-Foucher E, Stiller C, Lacour B, Kaatsch P. International classification of childhood cancer, third edition. Cancer. 2005;103:1457–67.

    Article  PubMed  Google Scholar 

  132. Magro G, Longo FR, Angelico G, Spadola S, Amore FF, Salvatorelli L. Immunohistochemistry as potential diagnostic pitfall in the most common solid tumors of children and adolescents. Acta Histochem. 2015;117:397–414.

    Article  CAS  PubMed  Google Scholar 

  133. Mattay KK, Maris JM, Schleiermacher G, Nakagawara A, Mackall CL, Diller L, et al. Neuroblastoma. Nat Rev Dis Primers. 2016;2:16078.

    Article  Google Scholar 

  134. Schleiermacher G, Janoueix-Lerosey I, Delattre O. Recent insights into the biology of neuroblastoma. Int J Cancer. 2014;135:2249–61.

    Article  CAS  PubMed  Google Scholar 

  135. Cheung NK, Dyer MA. Neuroblastoma: developmental biology, cancer genomics and immunotherapy. Nat Rev Cancer. 2013;13:397–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Monclair T, Brodeur GM, Ambros PF, Brisse HJ, Cecchetto G, Holmes K, et al. The International Neuroblastoma Risk Group (INRG) staging system: an INRG Task Force report. J Clin Oncol. 2009;27:298–303.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Cohn SL, Pearson AD, London WB, Monclair T, Ambros PF, Brodeur GM, et al. The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report. J Clin Oncol. 2009;27:289–97.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Pinto NR, Applebaum MA, Volchenboum SL, Matthay KK, London WB, Ambros PF, et al. Advances in risk classification and treatment strategies for neuroblastoma. J Clin Oncol. 2015;33:3008–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Janoueix-Lerosey I, Schleiermacher G, Michels E, Mosseri V, Ribeiro A, Lequin D, et al. Overall genomic pattern is a predictor of outcome in neuroblastoma. J Clin Oncol. 2009;27:1026–33.

    Article  PubMed  Google Scholar 

  140. Shimada H, Ambros IM, Dehner LP, Hata J, Joshi VV, Roald B, et al. The international neuroblastoma pathology classification (the Shimada system). Cancer. 1999;86:364–72.

    Article  CAS  PubMed  Google Scholar 

  141. Shimada H, Ambros IM, Dehner LP, Hata J, Joshi VV, Roald B. Terminology and morphologic criteria of neuroblastic tumors: recommendations by the International Neuroblastoma Pathology Committee. Cancer. 1999;86:349–63.

    Article  CAS  PubMed  Google Scholar 

  142. Peuchmaur M, D'Amore ES, Joshi VV, Roald B, Dehner LP, Gerbing RB, et al. Revision of the international neuroblastoma pathology classification. Cancer. 2003;98:2274–81.

    Article  PubMed  Google Scholar 

  143. Navarro S, Amann G, Beiske K, Cullinane CJ, d'Amore ES, Gambini C, et al. Prognostic value of international neuroblastoma pathology classification in localized resectable peripheral neurobkastic tumors. A histopathologic study of LNESG 94.01 trial and protocol. J Clin Oncol. 2006;24:695–9.

    Article  PubMed  Google Scholar 

  144. Mullassery D, Sharma V, Salim A, Jawaid WP, Pizer BL, Abernethy LJ, et al. Open versus needle biopsy in diagnosing neuroblastoma. J Pediatr Surg. 2014;49:1505–7.

    Article  PubMed  Google Scholar 

  145. Bielle F, Fréneaux P, Jeanne-Pasquier C, Maran-Gonzalez A, Rousseau A, Lamant L, et al. PHOX2B immunolabeling: a novel tool for the diagnosis of undifferentiated neuroblastomas among childhood small-, round-, blue-cell tumors. Am J Surg Pathol. 2012;36:1141–9.

    Article  PubMed  Google Scholar 

  146. Wang LL, Suganuma R, Ikegaki N, Tang X, Naranjo A, McGrady P, et al. Neuroblastoma of undifferentiated subtype, prognostic significance of prominent nucleolar formation, and MYC/MYCN protein expression: a report from the Children's Oncology Group. Cancer. 2013;119:3718–26.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Mossé YP. Anaplastic lymphoma kinase as a cancer target in pediatric malignancies. Clin Cancer Res. 2016;22:546–52.

    Article  PubMed  CAS  Google Scholar 

  148. Eleveld TF, Oldridge DA, Bernard V, Koster J, Daage LC, Diskin SJ, et al. Relapsed neuroblastomas show frequent RAS-MAPK pathway mutations. Nat Genet. 2015;47:864–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Irtan S, Ehrlich PF, Pritchard-Jones K. Wilms tumor: "State-of-the-art" update, 2016. Semin Pediatr Surg. 2016;25:250–6.

    Article  PubMed  Google Scholar 

  150. Szychot E, Apps J, Pritchard-Jones K. Wilms' tumor: biology, diagnosis and treatment. Transl Pediatr. 2014;3:12–24.

    PubMed  PubMed Central  Google Scholar 

  151. Dome JS, Graf N, Geller JI, Fernandez CV, Mullen EA, Spreafico F, et al. Advances in Wilms tumor treatment and biology: progress through international collaboration. J Clin Oncol. 2015;33:2999–3007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Vujanić GM, Kelsey A, Perlman EJ, Sandstedt B, Beckwith JB. Anaplastic sarcoma of the kidney: a clinicopathologic study of 20 cases of a new entity with polyphenotypic features. Am J Surg Pathol. 2007;31:1459–68.

    Article  PubMed  Google Scholar 

  153. Pierron G, Tirode F, Lucchesi C, Reynaud S, Ballet S, Cohen-Gogo S, et al. A new subtype of bone sarcoma defined by BCOR-CCNB3 gene fusion. Nat Genet. 2012;44:461–6.

    Article  CAS  PubMed  Google Scholar 

  154. Machado I, Navarro S, Llombart-Bosch A. Ewing sarcoma and the new emerging Ewing-like sarcomas: (CIC and BCOR-rearranged-sarcomas). A systematic review. Histol Histopathol. 2016;31:1169–81.

    PubMed  Google Scholar 

  155. Hung YP, Fletcher CD, Hornick JL. Evaluation of ETV4 and WT1 expression in CIC-rearranged sarcomas and histologic mimics. Mod Pathol. 2016;29:1324–34.

    Article  CAS  PubMed  Google Scholar 

  156. Siegele B, Roberts J, Black JO, Rudzinski E, Vargas SO, Galambos C. DUX4 immunohistochemistry is a highly sensitive and specific marker for CIC-DUX4 fusion-positive round cell tumor. Am J Surg Pathol. 2017;41:423–9.

    Article  PubMed  Google Scholar 

  157. Williams RF, Fernandez-Pineda I, Gosain A. Pediatric sarcomas. Surg Clin North Am. 2016;96:1107–25.

    Article  PubMed  Google Scholar 

  158. Alaggio R, Coffin CM. The evolution of pediatric soft tissue sarcoma classification in the last 50 years. Pediatr Dev Pathol. 2015;18:481–94.

    Article  PubMed  Google Scholar 

  159. Margol AS, Judkins AR. Pathology and diagnosis of SMARCB1-deficient tumors. Cancer Genet. 2014;207:358–64.

    Article  CAS  PubMed  Google Scholar 

  160. Hollmann TJ, Hornick JL. INI1-deficient tumors: diagnostic features and molecular genetics. Am J Surg Pathol. 2011;35:e47–63.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jerzy Klijanienko M.D., Ph.D., M.I.A.C. , Jerzy Klijanienko M.D., Ph.D., M.I.A.C. , Sarah Cohen-Gogo M.D., Ph.D. , Cécile Cellier M.D. , Rocco Cappellesso M.D. , Stamatios Theocharis M.D., Ph.D. , Jerzy Klijanienko M.D., Ph.D., M.I.A.C. , Jerzy Klijanienko M.D., Ph.D., M.I.A.C. or Patsy Dominique Berrebi M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Klijanienko, J. et al. (2018). General Considerations. In: Klijanienko, J., Pohar Marinšek, Ž., Domanski, H. (eds) Small Volume Biopsy in Pediatric Tumors. Springer, Cham. https://doi.org/10.1007/978-3-319-61027-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61027-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61026-9

  • Online ISBN: 978-3-319-61027-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics