Advertisement

General Considerations

  • Jerzy KlijanienkoEmail author
  • Sarah Cohen-Gogo
  • Marie Louise Choucair
  • Daniel Orbach
  • Cécile Cellier
  • Hervé J. Brisse
  • Rocco Cappellesso
  • Ambrogio Fassina
  • Stamatios Theocharis
  • Patsy Dominique Berrebi
  • Michel Peuchmaur
Chapter

Abstract

The time when an excisional biopsy was a standard procedure for the cyto/histopatologic diagnosis is over. Very few indications still remain for an excisional biopsy. Such a procedure is necessary for a diagnosis of bone tumors or for low-grade, presumed benign lesions. Small volume biopsy, which is a combination of fine-needle aspiration (FNA), core needle biopsy (CNB), and molecular analyses, offers the new horizons in this specific and complicated field of pathology [1]. It is preferred that specific molecular analyses be performed on aspirates, knowing that histological material obtained by core needle is very precious for standard histological and immunochistochemical techniques. Today, in experienced hands, this combination is an extremely powerful and rapid diagnostic method.

Keywords

Pediatric tumors Diagnosis Cytology Histology Molecular techniques Classification Clinical presentation Epidemiology 

References

  1. 1.
    Fassina A, Klijanienko J. Multidisciplinary and multimodal diagnostic approach in paediatric tumors combining fine needle aspiration, core needle biopsy and ancillary techniques. Cytopathology. 2014;25:3–5.PubMedCrossRefGoogle Scholar
  2. 2.
    Brisse HJ, Orbach D, Klijanienko J. Soft tissue tumors: imaging strategy. Pediatr Radiol. 2010;40:1019–28.PubMedCrossRefGoogle Scholar
  3. 3.
    Barroca H, Bom-Sucesso M. Fine needle biopsy with cytology in paediatrics: the importance of a multidisciplinary approach and the role of ancillary techniques. Cytopathology. 2014;25:6–20.PubMedCrossRefGoogle Scholar
  4. 4.
    Klijanienko J. Pediatric tumors. In: Layfield LJ, editor. Atlas of fine needle aspiration cytology. New Delhi: Jaypee; 2014. p. 338–53.Google Scholar
  5. 5.
    Klijanienko J, Freneaux P, Vielh P. Pediatric tumors. In: Domanski HA, editor. Atlas of fine needle aspiration cytology. London: Springer; 2014. p. 527–47.CrossRefGoogle Scholar
  6. 6.
    Papadopouli E, Michailidi E, Papadopoulou E, Paspalaki P, Vlahakis I, Kalmanti M. Cervical lymphadenopathy in childhood epidemiology and management. Pediatr Hematol Oncol. 2009;26:454–60.PubMedCrossRefGoogle Scholar
  7. 7.
    Kelly KM. Hodgkin lymphoma in children and adolescents: improving the therapeutic index. Blood. 2015;126:2452–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Minard-Colin V, Brugières L, Reiter A, Cairo MS, Gross TG, Woessmann W, et al. Non-hodgkin lymphoma in children and adolescents: progress through effective collaboration, current knowledge, and challenges ahead. J Clin Oncol. 2015;3:2963–74.CrossRefGoogle Scholar
  9. 9.
    Rouge M-È, Brisse H, Helfre S, Teissier N, Freneaux P, Orbach D. Undifferentiated nasopharyngeal carcinoma in adolescent and children. Bull Cancer. 2011;98:337–45.PubMedGoogle Scholar
  10. 10.
    Yalçin B, Ahmet Demir H, Yalçin B, et al. Primary chest tumors in children. International Society of Paediatric Oncology, SIOP XXXVII Annual Congress Meeting: Abstracts. Pediatr Blood Cancer. 2005;45:365–608. abstr P.D.079CrossRefGoogle Scholar
  11. 11.
    Giuseppucci C, Reusmann A, Giubergia V, Barrias C, Krüger A, Siminovich M, et al. Primary lung tumors in children: 24 years of experience at a referral center. Pediatr Surg Int. 2016;32:451–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Toma P, Granata C, Rossi A, Garaventa A. Multimodality imaging of Hodgkin disease and non-Hodgkin lymphomas in children. Radiographics. 2007;27:1335–54.PubMedCrossRefGoogle Scholar
  13. 13.
    Atallah V, Honore C, Orbach D, Helfre S, Ducassou A, Thomas L, et al. Role of adjuvant radiation therapy after surgery for abdominal desmoplastic small round cell tumors. Int J Radiat Oncol Biol Phys. 2016;95:1244–53.PubMedCrossRefGoogle Scholar
  14. 14.
    Brugières L, Branchereau S, Laithier V. Paediatric malignant liver tumours. Bull Cancer. 2012;99:219–28.PubMedGoogle Scholar
  15. 15.
    Perilongo G, Shafford EA. Liver tumours. Eur J Cancer. 1999;35:953–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Meyers RL. Tumors of the liver in children. Surg Oncol. 2007;16:195–203.PubMedCrossRefGoogle Scholar
  17. 17.
    Litten JB, Tomlinson GE. Liver tumors in children. Oncologist. 2008;13:812–20.PubMedCrossRefGoogle Scholar
  18. 18.
    Irtan S, Galmiche-Rolland L, Elie C, Orbach D, Sauvanet A, Elias D, et al. Recurrence of solid pseudopapillary neoplasms of the pancreas: results of a nationwide study of risk factors and treatment modalities. Pediatr Blood Cancer. 2016;63:1515–21.PubMedCrossRefGoogle Scholar
  19. 19.
    Dall’igna P, Cecchetto G, Bisogno G, Conte M, Chiesa PL, D’Angelo P, et al. Pancreatic tumors in children and adolescents: the Italian TREP project experience. Pediatr Blood Cancer. 2010;54:675–80.PubMedGoogle Scholar
  20. 20.
    McHugh K. Renal and adrenal tumours in children. Cancer Imaging. 2007;7:41–51.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Rha SE, Byun JY, Jung SE, Chun HJ, Lee HG, Lee JM. Neurogenic tumors in the abdomen: tumor types and imaging characteristics. Radiographics. 2003;23:29–43.PubMedCrossRefGoogle Scholar
  22. 22.
    Matthay KK, Maris JM, Schleiermacher G, Nakagawara A, Mackall CL, Diller L, et al. Neuroblastoma. Nat Rev Dis Primer. 2016;2:16078.CrossRefGoogle Scholar
  23. 23.
    Evans AE, D’Angio GJ, Propert K, Anderson J, Hann HW. Prognostic factor in neuroblastoma. Cancer. 1987;59:1853–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Rubie H, Hartmann O, Michon J, Frappaz D, Coze C, Chastagner P, et al. N-Myc gene amplification is a major prognostic factor in localized neuroblastoma: results of the French NBL 90 study. Neuroblastoma Study Group of the Société Francaise d’Oncologie Pédiatrique. J Clin Oncol. 1997;15:1171–82.PubMedCrossRefGoogle Scholar
  25. 25.
    Cecchetto G, Ganarin A, Bien E, Vorwerk P, Bisogno G, Godzinski J, et al. Outcome and prognostic factors in high-risk childhood adrenocortical carcinomas: a report from the European Cooperative Study Group on Pediatric Rare Tumors (EXPeRT). Pediatr Blood Cancer. 2017;64(6):E26368. https://doi.org/10.1002/pbc.26368.CrossRefGoogle Scholar
  26. 26.
    Dehner LP. Pediatric adrenocortical neoplasms: on the road to some clarity. Am J Surg Pathol. 2003;27(7):1005.PubMedCrossRefGoogle Scholar
  27. 27.
    Rescorla FJ. Pediatric germ cell tumors. Semin Pediatr Surg. 2012;21:51–60.PubMedCrossRefGoogle Scholar
  28. 28.
    Cecchetto G. Gonadal germ cell tumors in children and adolescents. J Indian Assoc Pediatr Surg. 2014;19:189–94.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Sargar KM, Sheybani EF, Shenoy A, Aranake-Chrisinger J, Khanna G. Pediatric fibroblastic and myofibroblastic tumors: a pictorial review. Radiographics. 2016;36:1195–214.PubMedCrossRefGoogle Scholar
  30. 30.
    Pastore G, Znaor A, Spreafico F, Graf N, Pritchard-Jones K, Steliarova-Foucher E. Malignant renal tumours incidence and survival in European children (1978-1997): report from the Automated Childhood Cancer Information System project. Eur J Cancer. 2006;42:2103–14.PubMedCrossRefGoogle Scholar
  31. 31.
    Smith MA, Seibel NL, Altekruse SF, Ries LAG, Melbert DL, O’Leary M, et al. Outcomes for children and adolescents with cancer: challenges for the twenty-first century. J Clin Oncol. 2010;28:2625–34.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Warmann SW, Nourkami N, Frühwald M, Leuschner I, Schenk J-P, Fuchs J, et al. Primary lung metastases in pediatric malignant non-Wilms renal tumors: data from SIOP 93-01/GPOH and SIOP 2001/GPOH. Klin Pediatr. 2012;224:148–52.CrossRefGoogle Scholar
  33. 33.
    Bhatnagar S. Management of Wilms’ tumor: NWTS vs SIOP. J Indian Assoc Pediatr Surg. 2009;14:6–14.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Boutroux H, Cellier C, Mosseri V, Helfre S, Levy C, Desjardins L, et al. Orbital rhabdomyosarcoma in children: a favorable primary suitable for a less-invasive treatment strategy. J Pediatr Hematol Oncol. 2014;36:605–12.PubMedCrossRefGoogle Scholar
  35. 35.
    Ferrari A, De Salvo GL, Brennan B, van Noesel MM, De Paoli A, Casanova M, et al. Synovial sarcoma in children and adolescents: the European Pediatric Soft Tissue Sarcoma Study Group prospective trial (EpSSG NRSTS 2005). Ann Oncol. 2015;26:567–72.PubMedCrossRefGoogle Scholar
  36. 36.
    Meazza C, Bisogno G, Gronchi A, Fiore M, Cecchetto G, Alaggio R, et al. Aggressive fibromatosis in children and adolescents: the Italian experience. Cancer. 2010;116:233–40.PubMedGoogle Scholar
  37. 37.
    Hernandez RK, Maegbaek ML, Liede A, Sørensen HT, Ehrenstein V. Bone metastases, skeletal-related events, and survival among children with cancer in Denmark. J Pediatr Hematol Oncol. 2014;36:528–33.PubMedCrossRefGoogle Scholar
  38. 38.
    Arndt CA, Crist WM. Common musculoskeletal tumors of childhood and adolescence. N Engl J Med. 1999;341:342–52.PubMedCrossRefGoogle Scholar
  39. 39.
    Birch JM, Pang D, Alston RD, Rowan S, Geraci M, Moran A, et al. Survival from cancer in teenagers and young adults in England, 1979–2003. Br J Cancer. 2008;99(5):830.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Picci P. Osteosarcoma (osteogenic sarcoma). Orphanet J Rare Dis. 2007;2:6.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Bernstein M, Kovar H, Paulussen M, Randall RL, Schuck A, Teot LA, et al. Ewing’s sarcoma family of tumors: current management. Oncologist. 2006;11:503–19.PubMedCrossRefGoogle Scholar
  42. 42.
    Paulussen M, Bielack S, Jürgens H, Casali PG, ESMO Guidelines Working Group. Ewing’s sarcoma of the bone: ESMO clinical recommendations for diagnosis, treatment and follow-up. Ann Oncol. 2009;20(Suppl 4):140–2.PubMedGoogle Scholar
  43. 43.
    Delattre O, Zucman J, Plougastel B, Desmaze C, Melot T, Peter M, et al. Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours. Nature. 1992;359:162–5.PubMedCrossRefGoogle Scholar
  44. 44.
    Kransdorf MJ, Murphey MD. Radiologic evaluation of soft-tissue masses: a current perspective. AJR Am J Roentgenol. 2000;175:575–87.PubMedCrossRefGoogle Scholar
  45. 45.
    Laor T. MR imaging of soft tissue tumors and tumor-like lesions. Pediatr Radiol. 2004;34:24–37.PubMedCrossRefGoogle Scholar
  46. 46.
    De Schepper AM, De Beuckeleer L, Vandevenne J, Somville J. Magnetic resonance imaging of soft tissue tumors. Eur Radiol. 2000;10:213–23.PubMedCrossRefGoogle Scholar
  47. 47.
    Brisse H, Orbach D, Klijanienko J, Freneaux P, Neuenschwander S. Imaging and diagnostic strategy of soft tissue tumors in children. Eur Radiol. 2006;16:1147–64.PubMedCrossRefGoogle Scholar
  48. 48.
    Kransdorf MJ. Benign soft-tissue tumors in a large referral population: distribution of specific diagnoses by age, sex, and location. AJR Am J Roentgenol. 1995;164:395–402.PubMedCrossRefGoogle Scholar
  49. 49.
    Kransdorf MJ. Malignant soft-tissue tumors in a large referral population: distribution of diagnoses by age, sex, and location. AJR Am J Roentgenol. 1995;164:129–34.PubMedCrossRefGoogle Scholar
  50. 50.
    De Schepper A, De Beuckeleer L, Vandevenne J. Soft tissue tumors in pediatric patients. In: De Schepper A, editor. Imaging of soft tissue tumors. Heidelberg: Springer-Verlag; 2001. p. 433–52.CrossRefGoogle Scholar
  51. 51.
    Weiss SW, Goldblum JR. Enzinger and Weiss's soft tissue tumors. 5th ed. St. Louis: Mosby; 2008.Google Scholar
  52. 52.
    Siegel MJ. Magnetic resonance imaging of musculoskeletal soft tissue masses. Radiol Clin N Am. 2001;39:701–20.PubMedCrossRefGoogle Scholar
  53. 53.
    Morley N, Omar I. Imaging evaluation of musculoskeletal tumors. Cancer Treat Res. 2014;162:9–29.PubMedCrossRefGoogle Scholar
  54. 54.
    Murphey MD, Senchak LT, Mambalam PK, Logie CI, Klassen-Fischer MK, Kransdorf MJ. From the radiologic pathology archives: ewing sarcoma family of tumors: radiologic-pathologic correlation. Radiographics. 2013;33(3):803–31.PubMedCrossRefGoogle Scholar
  55. 55.
    Kaste SC. Imaging pediatric bone sarcomas. Radiol Clin N Am. 2011;49(4):749–65.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Brisse H, Ollivier L, Edeline V, Pacquement H, Michon J, Glorion C, et al. Imaging of malignant tumours of the long bones in children: monitoring response to neoadjuvant chemotherapy and preoperative assessment. Pediatr Radiol. 2004;34(8):595–605.PubMedCrossRefGoogle Scholar
  57. 57.
    Irtan S, Brisse HJ, Minard-Colin V, Schleiermacher G, Galmiche-Rolland L, Le Cossec C, et al. Image-defined risk factor assessment of neurogenic tumors after neoadjuvant chemotherapy is useful for predicting intra-operative risk factors and the completeness of resection. Pediatr Blood Cancer. 2015;62(9):1543–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Brisse HJ, McCarville MB, Granata C, Krug KB, Wootton-Gorges SL, Kanegawa K, et al. Guidelines for imaging and staging of neuroblastic tumors: consensus report from the International Neuroblastoma Risk Group Project. International Neuroblastoma Risk Group Project. Radiology. 2011;261(1):243–57.PubMedCrossRefGoogle Scholar
  59. 59.
    Brisse HJ, Smets AM, Kaste SC, Owens CM. Imaging in unilateral Wilms tumour. Pediatr Radiol. 2008;38(1):18–29.PubMedCrossRefGoogle Scholar
  60. 60.
    Owens CM, Brisse HJ, Olsen ØE, Begent J, Smets AM. Bilateral disease and new trends in Wilms tumour. Pediatr Radiol. 2008;38(1):30–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Dumoucel S, Gauthier-Villars M, Stoppa-Lyonnet D, Parisot P, Brisse H, Philippe-Chomette P, et al. Malformations, genetic abnormalities, and Wilms tumor. Pediatr Blood Cancer. 2014;61(1):140–4.PubMedCrossRefGoogle Scholar
  62. 62.
    Anderson MW, Temple HT, Dussault RG, Kaplan PA. Compartmental anatomy: relevance to staging and biopsy of musculoskeletal tumors. AJR Am J Roentgenol. 1999;173:1663–71.PubMedCrossRefGoogle Scholar
  63. 63.
    Toomayan GA, Robertson F, Major NM. Lower extremity compartmental anatomy: clinical relevance to radiologists. Skelet Radiol. 2005;34:307–13.CrossRefGoogle Scholar
  64. 64.
    Shapeero LG, Vanel D, Verstraete KL, Bloem JL. Fast magnetic resonance imaging with contrast for soft tissue sarcoma viability. Clin Orthop. 2002;397:212–27.CrossRefGoogle Scholar
  65. 65.
    Puri A, Shingade VU, Agarwal MG, Anchan C, Juvekar S, Desai S, et al. CT-guided percutaneous core needle biopsy in deep seated musculoskeletal lesions: a prospective study of 128 cases. Skelet Radiol. 2006;35:138–43.CrossRefGoogle Scholar
  66. 66.
    Liu JC, Chiou HJ, Chen WM, Chou YH, Chen TH, Chen W, et al. Sonographically guided core needle biopsy of soft tissue neoplasms. J Clin Ultrasound. 2004;32:294–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Konermann W, Wuisman P, Ellermann A, Gruber G. Ultrasonographically guided needle biopsy of benign and malignant soft tissue and bone tumors. J Ultrasound Med. 2000;19:465–71.PubMedCrossRefGoogle Scholar
  68. 68.
    Shin HJ, Amaral JG, Armstrong D, Chait PG, Temple MJ, John P, et al. Image-guided percutaneous biopsy of musculoskeletal lesions in children. Pediatr Radiol. 2007;37:362–9.PubMedCrossRefGoogle Scholar
  69. 69.
    Wakely PE Jr, Kardos TF, WJ F. Application of fine needle aspiration biopsy to pediatrics. Hum Pathol. 1988;19:1383–6.PubMedCrossRefGoogle Scholar
  70. 70.
    Costa MJ, Campman SC, Davis RL, Howell LP. Fine-needle aspiration cytology of sarcoma: retrospective review of diagnostic utility and specificity. Diagn Cytopathol. 1996;15:23–32.PubMedCrossRefGoogle Scholar
  71. 71.
    Willen H, Akerman M, Carlen B. Fine needle aspiration (FNA) in the diagnosis of soft tissue tumours; a review of 22 years experience. Cytopathology. 1995;6:236–47.PubMedCrossRefGoogle Scholar
  72. 72.
    Kilpatrick SE, Bergman S, Pettenati MJ, Gulley ML. The usefulness of cytogenetic analysis in fine needle aspirates for the histologic subtyping of sarcomas. Mod Pathol. 2006;19(6):815–9.PubMedGoogle Scholar
  73. 73.
    Klijanienko J, Pierron G, Sastre-Garau X, Theocharis S. Value of combined cytology and molecular information in the diagnosis of soft tissue tumors. Cancer Cytopathol. 2015;123(3):141–51.PubMedCrossRefGoogle Scholar
  74. 74.
    Dal Cin P, Qian X, Cibas ES. The marriage of cytology and cytogenetics. Cancer Cytopathol. 2013;121(6):279–90.PubMedCrossRefGoogle Scholar
  75. 75.
    Schmitt F, Barroca H. Role of ancillary studies in fine-needle aspiration from selected tumors. Cancer Cytopathol. 2012;120(3):145–60.PubMedCrossRefGoogle Scholar
  76. 76.
    Zhang S, Gong Y. From cytomorphology to molecular pathology: maximizing the value of cytology of lymphoproliferative disorders and soft tissue tumors. Am J Clin Pathol. 2013;140(4):454–67.PubMedCrossRefGoogle Scholar
  77. 77.
    VanderLaan PA. Molecular markers: implications for cytopathology and specimen collection. Cancer Cytopathol. 2015;123(8):454–60.PubMedCrossRefGoogle Scholar
  78. 78.
    Schmitt FC, Vielh P. Molecular biology and cytopathology. Principles and applications. Ann Pathol. 2012;32(6):e57–63.PubMedCrossRefGoogle Scholar
  79. 79.
    Krishnamurthy S. Applications of molecular techniques to fine-needle aspiration biopsy. Cancer. 2007;111(2):106–22.PubMedCrossRefGoogle Scholar
  80. 80.
    Gazziero A, Guzzardo V, Aldighieri E, Fassina A. Morphological quality and nucleic acid preservation in cytopathology. J Clin Pathol. 2009;62(5):429–34.PubMedCrossRefGoogle Scholar
  81. 81.
    Fowler LJ, Lachar WA. Application of immunohistochemistry to cytology. Arch Pathol Lab Med. 2008;132(3):373–83.PubMedGoogle Scholar
  82. 82.
    Lin G, Doyle LA. An update on the application of newly described immunohistochemical markers in soft tissue pathology. Arch Pathol Lab Med. 2015;139(1):106–21.PubMedCrossRefGoogle Scholar
  83. 83.
    Silowash R, Pantanowitz L, Craig FE, Simons JP, Monaco SE. Utilization of flow cytometry in pediatric fine-needle aspiration biopsy specimens. Acta Cytol. 2016;60(4):344–53.PubMedCrossRefGoogle Scholar
  84. 84.
    Paul T, Gautam U, Rajwanshi A, Das A, Trehan A, Malhotra P, et al. Flow cytometric immunophenotyping and cell block immunocytochemistry in the diagnosis of primary non-Hodgkin's lymphoma by fine-needle aspiration: experience from a tertiary care center. J Cytol. 2014;31(3):123–30.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Chen Y, Savargaonkar P, Fuchs A, Wasserman P. Role of flow cytometry in the diagnosis of lymphadenopathy in children. Diagn Cytopathol. 2002;26(1):5–9.PubMedCrossRefGoogle Scholar
  86. 86.
    Schmidt RL, Witt BL, Lopez-Calderon LE, Layfield LJ. The influence of rapid on site evaluation on the adequacy rate of fine-needle aspiration cytology: a systematic review and meta-analysis. Am J Clin Pathol. 2013;139(3):300–8.PubMedCrossRefGoogle Scholar
  87. 87.
    Fassina A, Corradin M, Zardo D, Cappellesso R, Corbetti F, Fassan M. Role and accuracy of rapid on-site evaluation of CT-guided fine needle aspiration cytology of lung nodules. Cytopathology. 2011;22(5):306–12.PubMedCrossRefGoogle Scholar
  88. 88.
    Alexandrow LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, et al. Signatures of mutational processes in human cancer. Nature. 2013;500:415–21.CrossRefGoogle Scholar
  89. 89.
    Bender JG, Verma A, Schiffman JD. Translating genomic discoveries to the clinic in pediatric oncology. Curr Opin Pediatr. 2015;27:34–43.CrossRefGoogle Scholar
  90. 90.
    Schultz KR, Carroll A, Heerema NA, Bowman WP, Aledo A, Slayton WB, et al. Long-term follow-up of imatinib in pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia: Children’s Oncology Group study AALL0031. Leukemia. 2014;28:1467–71.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Brondeur GM, Seeger RC, Scwab M, Varmus HE, Bishop JM. Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science. 1984;224:1121–4.CrossRefGoogle Scholar
  92. 92.
    Duffy DJ, Krstic A, Halasz M, Schwarzl T, Fey D, Iljin K, et al. Integrative omics reveals MYCN as a global suppressor of cellular signaling and enables network-based therapeutic target discovery in neuroblastoma. Oncotarget. 2015;6:43182–201.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Chen Y, Takita J, Choi YL, Kato M, Ohira M, Sanada M, et al. Oncogenic mutations in ALK kinase in neuroblastoma. Nature. 2008;455:971–4.PubMedCrossRefGoogle Scholar
  94. 94.
    Janoueix-Lerosey I, Lequin D, Brugieres L, Ribeiro A, de Pontual L, Combaret V, et al. Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature. 2008;455:967–70.PubMedCrossRefGoogle Scholar
  95. 95.
    Pugh TJ, Morozova O, Attiyeh EF, Asgharzadeh S, Wei JS, Auclair D, et al. The genetic landscape of high risk neuroblastoma. Nat Genet. 2013;45:279–84.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Bosse K, Maris JM. Advances in the translational genomics of Neuroblastoma: from improving risk stratification and revealing novel biology to identifying actionable genomic alterations. Cancer. 2016;122:20–33.PubMedCrossRefGoogle Scholar
  97. 97.
    Shern JF, Chen L, Chmielecki J, Wei JS, Patidar R, Rosenberg M, et al. Comprehensive genomic analysis of rhabdomyosarcoma reveals a landscape of alterations affecting a common genetic axis in fusion-positive and fusion-negative tumors. Cancer Discov. 2014;4:216–31.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Crompton BD, Stewart C, Taylor-Weiner A, Alexe G, Kurek KC, Calicchio ML, et al. The genomic landscape of pediatric Ewing sarcoma. Cancer Discov. 2014;4:1326–41.PubMedCrossRefGoogle Scholar
  99. 99.
    Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, et al. Intratumor heterogeneity and branched evolution by multiregion sequencing. N Engl J Med. 2012;366:883–92.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Schleiermacher G, Javanmardi N, Bernard V, Leroy Q, Cappo J, Rio Frio T, et al. Emergence of new ALK mutations at relapse of neuroblastoma. J Clin Oncol. 2014;32:2727–34.PubMedCrossRefGoogle Scholar
  101. 101.
    Tirode F, Surdez D, Ma X, Parker M, Le Deley MC, Bahrami A, et al. Genomic landscape of Ewing sarcoma defines ann aggressive subtype with co-association of STAG2 and TP53 mutations. Cancer Discov. 2014;4:1342–53.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Xu J, Gong B, Wu L, Thakkar S, Hong H, Tong W. Comprehensive assessments of RNA-seq by the SEQC Consortium: FDA-Led efforts advance precision medicine. Pharmaceutics. 2016;8:8–15.PubMedCentralCrossRefGoogle Scholar
  103. 103.
    Pohar-Marinsek Z. Difficulties in diagnosing small round cell tumors of childhood from fine needle aspiration cytology samples. Cytopathology. 2008;19:67–79.PubMedCrossRefGoogle Scholar
  104. 104.
    Barroca H. Fine needle biopsy and genetics, two allied weapons in the diagnosis, prognosis, and target therapeutics of solid pediatric tumors. Diagn Cytopathol. 2008;36:678–84.PubMedCrossRefGoogle Scholar
  105. 105.
    Jereb B, Us-Krasovec M, Jereb M. Thin needle biopsy of solid tumors in children. Med Pediatr Oncol. 1978;4:213–20.PubMedCrossRefGoogle Scholar
  106. 106.
    Rajwanshi A, Rao KL, Marwaha RK, Nijhawan VS, Gupta SK. Role of fine-needle aspiration cytology in childhood malignancies. Diagn Cytopathol. 1989;5:378–82.PubMedCrossRefGoogle Scholar
  107. 107.
    Mathiot C, Decaudin D, Klijanienko J, Couturier J, Salomon A, Dumont J, et al. Fine-needle aspiration cytology combined with flow cytometry immunophenotyping is a rapid and accurate approach for the evaluation of suspicious superficial lymphoid lesions. Diagn Cytopathol. 2006;34:472–8.PubMedCrossRefGoogle Scholar
  108. 108.
    Drut R, Drut RM, Pollono D, Tomarchio S, Ibáñez O, Urrutia A, et al. Fine needle aspiration biopsy in pediatric oncology patients (899 biopsies). J Pediatr Hematol Oncol. 2005;27:370–6.PubMedCrossRefGoogle Scholar
  109. 109.
    Vlajnic T, Brisse HJ, Aerts I, Fréneaux P, Cellier C, Fabre M, Klijanienko J. Fine needle aspiration in the diagnosis and classification of hepatoblastoma: analysis of 21 new cases. Diagn Cytopathol. 2017;45:91–100.Google Scholar
  110. 110.
    Assi A, Patetta R, Fava C, Berti GL, Bacchioni AM, Cozzi L. Fine-needle aspiration of testicular lesions: report of 17 cases. Diagn Cytopathol. 2000;23:388–92.PubMedCrossRefGoogle Scholar
  111. 111.
    Garcia-Solano J, Sanchez-Sanchez C, Montalban-Romero S, Sola-Pérez J, Pérez-Guillermo M. Fine needle aspiration (FNA) of testicular germ cell tumors; a 10-year experience in a community hospital. Cytopathology. 1998;9:248–62.PubMedCrossRefGoogle Scholar
  112. 112.
    Klijanienko J, Caillaud JM, Lagacé R, Vielh P. Cytohistologic correlations in 56 synovial sarcomas in 36 patients. The Institut Curie experience. Diagn Cytopathol. 2002;27:96–102.PubMedCrossRefGoogle Scholar
  113. 113.
    Barroca HM, Costa MJ, Carvalho JL. Cytologic profile of rhabdoid tumor of the kidney. A report of 3 cases. Acta Cytol. 2003;47:1055–8.PubMedCrossRefGoogle Scholar
  114. 114.
    Thomson TA, Klijanienko J, Couturier J, Brisse H, Pierron G, Freneaux P, et al. Fine-needle aspiration of renal and extrarenal rhabdoid tumors: the experience of the Institut Curie regarding 20 tumors in 13 patients. Cancer Cytopathol. 2011;119:49–57.Google Scholar
  115. 115.
    Klijanienko J, Couturier J, Bourdeaut F, Fréneaux P, Ballet S, Brisse H, et al. Fine-needle aspiration as a diagnostic technique in 50 cases of primary Ewing sarcoma/peripheral neuroectodermal tumor. Institut Curie’s experience. Diagn Cytopathol. 2012;40:19–25.PubMedCrossRefGoogle Scholar
  116. 116.
    Akhtar M, Ali MA, Sackey K, Sabbah R, Burgess A. Aspiration cytology of Wilms’ tumor: correlation of cytologic and histologic features. Diagn Cytopathol. 1989;5:269–74.PubMedCrossRefGoogle Scholar
  117. 117.
    Fröstad B, Martinsson T, Tani E, Falkmer U, Darnfors C, Skoog L, et al. The use of fine-needle aspiration cytology in the molecular characterization of neuroblastoma in children. Cancer. 1999;87:60–8.PubMedCrossRefGoogle Scholar
  118. 118.
    Klijanienko J, Couturier J, Brisse H, Pierron G, Fréneaux P, Berger F, et al. Diagnostic and prognostic information obtained on fine-needle aspirates of primary neuroblastic tumors: proposal for a cytology prognostic score. Cancer Cytopathol. 2011;119:411–23.PubMedCrossRefGoogle Scholar
  119. 119.
    Klijanienko J, Lagacé R, editors. Soft tissue tumors: a multidisciplinary, decisional diagnostic approach. Hoboken: John Wiley and Sons Inc.; 2011.Google Scholar
  120. 120.
    Silverman JF, Joshi VV. FNA biopsy of small round cell tumors of childhood: cytomorphologic features and the role of ancillary studies. Diagn Cytopathol. 1994;10:245–55.PubMedCrossRefGoogle Scholar
  121. 121.
    Akhtar M, Iqbal MA, Mourad W, Ali MA. Fine-needle aspiration biopsy diagnosis of small round cell tumors of childhood: a comprehensive approach. Diagn Cytopathol. 1999;21:81–91.PubMedCrossRefGoogle Scholar
  122. 122.
    Layfield LJ, Liu K, Dodge RK. Logistic regression analysis of small round cell neoplasms: a cytologic study. Diagn Cytopathol. 1999;20:271–7.PubMedCrossRefGoogle Scholar
  123. 123.
    Pohar-Marinsek Z, Anzic J, Jereb B. Topical topic: value of fine needle aspiration biopsy in childhood rhabdomyosarcoma: twenty-six years of experience in Slovenia. Med Pediatr Oncol. 2002;38:416–20.PubMedCrossRefGoogle Scholar
  124. 124.
    Klijanienko J, Caillaud JM, Orbach D, Brisse H, Lagacé R, Vielh P, et al. Cyto-histological correlations in primary, recurrent and metastatic rhabdomyosarcoma. The Institut Curie experience. Diagn Cytopathol. 2007;35:482–7.PubMedCrossRefGoogle Scholar
  125. 125.
    Klijanienko J, Colin P, Couturier J, Lagacé R, Fréneaux P, Pierron G, et al. Fine-needle aspiration in desmoplastic small round cell tumor: a report of 10 new tumors in 8 patients with clinicopathological and molecular correlations with review of the literature. Cancer Cytopathol. 2014;122:386–93.PubMedCrossRefGoogle Scholar
  126. 126.
    Klijanienko J, Caillaud JM, Lagacé R. Cytohistologic correlations in schwannomas (neurilemmomas), including "ancient," cellular, and epithelioid variants. Diagn Cytopathol. 2006;34:517–22.PubMedCrossRefGoogle Scholar
  127. 127.
    Klijanienko J, Caillaud JM, Lagacé R. Fine-needle aspiration of primary and recurrent dermatofibrosarcoma protuberans. Diagn Cytopathol. 2004;30:261–5.PubMedCrossRefGoogle Scholar
  128. 128.
    Klijanienko J, Caillaud JM, Lagacé R, Vielh P. Cytohistologic correlations of 24 malignant peripheral nerve sheath tumor (MPNST) in 17 patients: the Institut Curie experience. Diagn Cytopathol. 2002;27:103–8.PubMedCrossRefGoogle Scholar
  129. 129.
    Klijanienko J, Caillaud JM, Orbach D, Pacquement H, Lagacé R. Cyto-histological correlations in primary, recurrent and metastatic bone and soft tissue osteosarcoma. Institut Curie’s experience. Diagn Cytopathol. 2007;35(5):270.PubMedCrossRefGoogle Scholar
  130. 130.
    Costa J, Klijanienko J, Desjardins L, Cassoux N, Machet MC, Pacquement H. Fine needle aspiration in intraocular metastasis from pleuropulmonary blastoma. A case report and a review of the literature. Diagn Cytopathol. 2017;45:156–60.PubMedCrossRefGoogle Scholar
  131. 131.
    Steliarova-Foucher E, Stiller C, Lacour B, Kaatsch P. International classification of childhood cancer, third edition. Cancer. 2005;103:1457–67.PubMedCrossRefGoogle Scholar
  132. 132.
    Magro G, Longo FR, Angelico G, Spadola S, Amore FF, Salvatorelli L. Immunohistochemistry as potential diagnostic pitfall in the most common solid tumors of children and adolescents. Acta Histochem. 2015;117:397–414.PubMedCrossRefGoogle Scholar
  133. 133.
    Mattay KK, Maris JM, Schleiermacher G, Nakagawara A, Mackall CL, Diller L, et al. Neuroblastoma. Nat Rev Dis Primers. 2016;2:16078.CrossRefGoogle Scholar
  134. 134.
    Schleiermacher G, Janoueix-Lerosey I, Delattre O. Recent insights into the biology of neuroblastoma. Int J Cancer. 2014;135:2249–61.PubMedCrossRefGoogle Scholar
  135. 135.
    Cheung NK, Dyer MA. Neuroblastoma: developmental biology, cancer genomics and immunotherapy. Nat Rev Cancer. 2013;13:397–411.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Monclair T, Brodeur GM, Ambros PF, Brisse HJ, Cecchetto G, Holmes K, et al. The International Neuroblastoma Risk Group (INRG) staging system: an INRG Task Force report. J Clin Oncol. 2009;27:298–303.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Cohn SL, Pearson AD, London WB, Monclair T, Ambros PF, Brodeur GM, et al. The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report. J Clin Oncol. 2009;27:289–97.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Pinto NR, Applebaum MA, Volchenboum SL, Matthay KK, London WB, Ambros PF, et al. Advances in risk classification and treatment strategies for neuroblastoma. J Clin Oncol. 2015;33:3008–17.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Janoueix-Lerosey I, Schleiermacher G, Michels E, Mosseri V, Ribeiro A, Lequin D, et al. Overall genomic pattern is a predictor of outcome in neuroblastoma. J Clin Oncol. 2009;27:1026–33.PubMedCrossRefGoogle Scholar
  140. 140.
    Shimada H, Ambros IM, Dehner LP, Hata J, Joshi VV, Roald B, et al. The international neuroblastoma pathology classification (the Shimada system). Cancer. 1999;86:364–72.PubMedCrossRefGoogle Scholar
  141. 141.
    Shimada H, Ambros IM, Dehner LP, Hata J, Joshi VV, Roald B. Terminology and morphologic criteria of neuroblastic tumors: recommendations by the International Neuroblastoma Pathology Committee. Cancer. 1999;86:349–63.PubMedCrossRefGoogle Scholar
  142. 142.
    Peuchmaur M, D'Amore ES, Joshi VV, Roald B, Dehner LP, Gerbing RB, et al. Revision of the international neuroblastoma pathology classification. Cancer. 2003;98:2274–81.PubMedCrossRefGoogle Scholar
  143. 143.
    Navarro S, Amann G, Beiske K, Cullinane CJ, d'Amore ES, Gambini C, et al. Prognostic value of international neuroblastoma pathology classification in localized resectable peripheral neurobkastic tumors. A histopathologic study of LNESG 94.01 trial and protocol. J Clin Oncol. 2006;24:695–9.PubMedCrossRefGoogle Scholar
  144. 144.
    Mullassery D, Sharma V, Salim A, Jawaid WP, Pizer BL, Abernethy LJ, et al. Open versus needle biopsy in diagnosing neuroblastoma. J Pediatr Surg. 2014;49:1505–7.PubMedCrossRefGoogle Scholar
  145. 145.
    Bielle F, Fréneaux P, Jeanne-Pasquier C, Maran-Gonzalez A, Rousseau A, Lamant L, et al. PHOX2B immunolabeling: a novel tool for the diagnosis of undifferentiated neuroblastomas among childhood small-, round-, blue-cell tumors. Am J Surg Pathol. 2012;36:1141–9.PubMedCrossRefGoogle Scholar
  146. 146.
    Wang LL, Suganuma R, Ikegaki N, Tang X, Naranjo A, McGrady P, et al. Neuroblastoma of undifferentiated subtype, prognostic significance of prominent nucleolar formation, and MYC/MYCN protein expression: a report from the Children's Oncology Group. Cancer. 2013;119:3718–26.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Mossé YP. Anaplastic lymphoma kinase as a cancer target in pediatric malignancies. Clin Cancer Res. 2016;22:546–52.PubMedCrossRefGoogle Scholar
  148. 148.
    Eleveld TF, Oldridge DA, Bernard V, Koster J, Daage LC, Diskin SJ, et al. Relapsed neuroblastomas show frequent RAS-MAPK pathway mutations. Nat Genet. 2015;47:864–71.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Irtan S, Ehrlich PF, Pritchard-Jones K. Wilms tumor: "State-of-the-art" update, 2016. Semin Pediatr Surg. 2016;25:250–6.PubMedCrossRefGoogle Scholar
  150. 150.
    Szychot E, Apps J, Pritchard-Jones K. Wilms' tumor: biology, diagnosis and treatment. Transl Pediatr. 2014;3:12–24.PubMedPubMedCentralGoogle Scholar
  151. 151.
    Dome JS, Graf N, Geller JI, Fernandez CV, Mullen EA, Spreafico F, et al. Advances in Wilms tumor treatment and biology: progress through international collaboration. J Clin Oncol. 2015;33:2999–3007.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Vujanić GM, Kelsey A, Perlman EJ, Sandstedt B, Beckwith JB. Anaplastic sarcoma of the kidney: a clinicopathologic study of 20 cases of a new entity with polyphenotypic features. Am J Surg Pathol. 2007;31:1459–68.PubMedCrossRefGoogle Scholar
  153. 153.
    Pierron G, Tirode F, Lucchesi C, Reynaud S, Ballet S, Cohen-Gogo S, et al. A new subtype of bone sarcoma defined by BCOR-CCNB3 gene fusion. Nat Genet. 2012;44:461–6.PubMedCrossRefGoogle Scholar
  154. 154.
    Machado I, Navarro S, Llombart-Bosch A. Ewing sarcoma and the new emerging Ewing-like sarcomas: (CIC and BCOR-rearranged-sarcomas). A systematic review. Histol Histopathol. 2016;31:1169–81.PubMedGoogle Scholar
  155. 155.
    Hung YP, Fletcher CD, Hornick JL. Evaluation of ETV4 and WT1 expression in CIC-rearranged sarcomas and histologic mimics. Mod Pathol. 2016;29:1324–34.PubMedCrossRefGoogle Scholar
  156. 156.
    Siegele B, Roberts J, Black JO, Rudzinski E, Vargas SO, Galambos C. DUX4 immunohistochemistry is a highly sensitive and specific marker for CIC-DUX4 fusion-positive round cell tumor. Am J Surg Pathol. 2017;41:423–9.PubMedCrossRefGoogle Scholar
  157. 157.
    Williams RF, Fernandez-Pineda I, Gosain A. Pediatric sarcomas. Surg Clin North Am. 2016;96:1107–25.PubMedCrossRefGoogle Scholar
  158. 158.
    Alaggio R, Coffin CM. The evolution of pediatric soft tissue sarcoma classification in the last 50 years. Pediatr Dev Pathol. 2015;18:481–94.PubMedCrossRefGoogle Scholar
  159. 159.
    Margol AS, Judkins AR. Pathology and diagnosis of SMARCB1-deficient tumors. Cancer Genet. 2014;207:358–64.PubMedCrossRefGoogle Scholar
  160. 160.
    Hollmann TJ, Hornick JL. INI1-deficient tumors: diagnostic features and molecular genetics. Am J Surg Pathol. 2011;35:e47–63.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Jerzy Klijanienko
    • 1
    Email author
  • Sarah Cohen-Gogo
    • 2
  • Marie Louise Choucair
    • 2
  • Daniel Orbach
    • 2
  • Cécile Cellier
    • 2
  • Hervé J. Brisse
    • 2
  • Rocco Cappellesso
    • 3
  • Ambrogio Fassina
    • 4
  • Stamatios Theocharis
    • 5
  • Patsy Dominique Berrebi
    • 6
  • Michel Peuchmaur
    • 6
  1. 1.Department of PathologyInstitut CurieParisFrance
  2. 2.Departments of Pediatric Oncology and RadiologyInstitut CurieParisFrance
  3. 3.Department of Medicine, Cytopathology UnitUniversity of PadovaPadovaItaly
  4. 4.Department of Surgical Pathology and Cytopathology UnitUniversity of PadovaPadovaItaly
  5. 5.First Department of PathologyNational and Kapodistrian University of AthensAthensGreece
  6. 6.Hôpital Robert DebréParisFrance

Personalised recommendations