Exercise and Nutritional Concerns

  • Sheri R. ColbergEmail author
Part of the Contemporary Diabetes book series (CDI)


Recommended nutritional practices for optimal health, weight loss and maintenance, and sports performance for everyone are still being currently debated. Diabetes adds additional elements to managing exercise effectively and ensuring that the body has adequate nutrients and fuels to perform optimally. Nutritional recommendations differ somewhat based on an individual’s goal for exercising with diabetes, which may focus on diabetes and overall health benefits, weight control, athletic performance, or a combination of these. Healthy eating and a higher fiber intake will benefit health, but individuals with diabetes must also understand the impact the types and quantities of carbohydrates and other macronutrients have on their glycemic control. Weight loss and maintenance are best accomplished through lifestyle changes that include both improvements in diet and greater physical activity participation. Athletic performance and physical activity participation are greatly affected by nutrition, including adequate intake of macronutrients to replete muscle glycogen, micronutrients to optimize metabolism, water and other fluids to maintain hydration, and more. Nutritional best practices and recommendations are given in all of these areas in this chapter.


Diabetes Physical activity Exercise Nutrition Diet Weight loss Athletic performance 


  1. 1.
    American Diabetes Association: 4. Lifestyle management. Diabetes Care. 2017;40:S33–43.CrossRefGoogle Scholar
  2. 2.
    Kay CD, Kris-Etherton PM, West SG. Effects of antioxidant-rich foods on vascular reactivity: review of the clinical evidence. Curr Atheroscler rep. 2006;8:510–22.CrossRefPubMedGoogle Scholar
  3. 3.
    Kaulmann A, Bohn T. Carotenoids, inflammation, and oxidative stress – implications of cellular signaling pathways and relation to chronic disease prevention. Nutr Res. 2014;34:907–29.CrossRefPubMedGoogle Scholar
  4. 4.
    Siri-Tarino PW, Sun Q, Hu FB, Krauss RM. Saturated fat, carbohydrate, and cardiovascular disease. Am J Clin Nutr. 2010;91:502–9.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Micha R, Michas G, Lajous M, Mozaffarian D. Processing of meats and cardiovascular risk: time to focus on preservatives. BMC Med. 2013;11:136.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ericson U, Sonestedt E, Gullberg B, Hellstrand S, Hindy G, Wirfalt E, et al. High intakes of protein and processed meat associate with increased incidence of type 2 diabetes. Br J Nutr. 2013;109:1143–53.CrossRefPubMedGoogle Scholar
  7. 7.
    Bjermo H, Iggman D, Kullberg J, Dahlman I, Johansson L, Persson L, et al. Effects of n-6 pufas compared with sfas on liver fat, lipoproteins, and inflammation in abdominal obesity: a randomized controlled trial. Am J Clin Nutr. 2012;95:1003–12.CrossRefPubMedGoogle Scholar
  8. 8.
    Alhazmi A, Stojanovski E, McEvoy M, Garg ML. Macronutrient intakes and development of type 2 diabetes: a systematic review and meta-analysis of cohort studies. J Am Coll Nutr. 2012;31:243–58.CrossRefPubMedGoogle Scholar
  9. 9.
    Blaut M. Gut microbiota and energy balance: role in obesity. Proc Nutr Soc. 2014:1–8.Google Scholar
  10. 10.
    Otles S, Ozgoz S. Health effects of dietary fiber. Acta Sci Pol Technol Aliment. 2014;13:191–202.CrossRefPubMedGoogle Scholar
  11. 11.
    Rose DJ. Impact of whole grains on the gut microbiota: the next frontier for oats? Br J Nutr. 2014;112(Suppl 2):S44–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Brand-Miller JC. Postprandial glycemia, glycemic index, and the prevention of type 2 diabetes. Am J Clin Nutr. 2004;80:243–4.PubMedGoogle Scholar
  13. 13.
    Turner-McGrievy GM, Jenkins DJ, Barnard ND, Cohen J, Gloede L, Green AA. Decreases in dietary glycemic index are related to weight loss among individuals following therapeutic diets for type 2 diabetes. J Nutr. 2011;141:1469–74.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Brand-Miller J, McMillan-Price J, Steinbeck K, Caterson I. Dietary glycemic index: health implications. J Am Coll Nutr. 2009;28(Suppl):446s–9s.CrossRefPubMedGoogle Scholar
  15. 15.
    Campbell MD, Walker M, Bracken RM, Turner D, Stevenson EJ, Gonzalez JT, et al. Insulin therapy and dietary adjustments to normalize glycemia and prevent nocturnal hypoglycemia after evening exercise in type 1 diabetes: a randomized controlled trial. BMJ Open Diabetes Res Care. 2015;3:e000085.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Brazeau AS, Mircescu H, Desjardins K, Leroux C, Strychar I, Ekoe JM, et al. Carbohydrate counting accuracy and blood glucose variability in adults with type 1 diabetes. Diabetes Res Clin Pract. 2013;99:19–23.CrossRefPubMedGoogle Scholar
  17. 17.
    Brand-Miller J, Buyken AE. The glycemic index issue. Curr Opin Lipidol. 2012;23:62–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Bell KJ, Smart CE, Steil GM, Brand-Miller JC, King B, Wolpert HA. Impact of fat, protein, and glycemic index on postprandial glucose control in type 1 diabetes: implications for intensive diabetes management in the continuous glucose monitoring era. Diabetes Care. 2015;38:1008–15.CrossRefPubMedGoogle Scholar
  19. 19.
    Wolpert HA, Atakov-Castillo A, Smith SA, Steil GM. Dietary fat acutely increases glucose concentrations and insulin requirements in patients with type 1 diabetes: implications for carbohydrate-based bolus dose calculation and intensive diabetes management. Diabetes Care. 2013;36:810–6.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Bozzetto L, Giorgini M, Alderisio A, Costagliola L, Giacco A, Riccardi G, et al. Glycaemic load versus carbohydrate counting for insulin bolus calculation in patients with type 1 diabetes on insulin pump. Acta Diabetol. 2015;52:865–71.CrossRefPubMedGoogle Scholar
  21. 21.
    Kaviani M, Chilibeck PD, Yee P, Zello GA. The effect of consuming low- versus high-glycemic index meals after exercise on postprandial blood lipid response following a next-day high-fat meal. Nutr Diabetes. 2016;6:e216.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kalergis M, Schiffrin A, Gougeon R, Jones PJ, Yale JF. Impact of bedtime snack composition on prevention of nocturnal hypoglycemia in adults with type 1 diabetes undergoing intensive insulin management using lispro insulin before meals: a randomized, placebo-controlled, crossover trial. Diabetes Care. 2003;26:9–15.CrossRefPubMedGoogle Scholar
  23. 23.
    Smart CE, Evans M, O’Connell SM, McElduff P, Lopez PE, Jones TW, et al. Both dietary protein and fat increase postprandial glucose excursions in children with type 1 diabetes, and the effect is additive. Diabetes Care. 2013;36:3897–902. doi: 38 10.2337/dc3813-1195. Epub 2013 Oct 3829
  24. 24.
    Bao J, de Jong V, Atkinson F, Petocz P, Brand-Miller JC. Food insulin index: physiologic basis for predicting insulin demand evoked by composite meals. Am J Clin Nutr. 2009;90:986–92.CrossRefPubMedGoogle Scholar
  25. 25.
    Bell KJ, Bao J, Petocz P, Colagiuri S, Brand-Miller JC. Validation of the food insulin index in lean, young, healthy individuals, and type 2 diabetes in the context of mixed meals: an acute randomized crossover trial. Am J Clin Nutr. 2015;102:801–6.CrossRefPubMedGoogle Scholar
  26. 26.
    Bao J, Gilbertson HR, Gray R, Munns D, Howard G, Petocz P, et al. Improving the estimation of mealtime insulin dose in adults with type 1 diabetes: the normal insulin demand for dose adjustment (nidda) study. Diabetes Care. 2011;34:2146–51.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Ajala O, English P, Pinkney J. Systematic review and meta-analysis of different dietary approaches to the management of type 2 diabetes. Am J Clin Nutr. 2013;97:505–16.CrossRefPubMedGoogle Scholar
  28. 28.
    Brazeau AS, Leroux C, Mircescu H, Rabasa-Lhoret R. Physical activity level and body composition among adults with type 1 diabetes. Diabet Med. 2012;29:e402–8. doi: 4 10.1111/j.1464-5491.2012.03757.x
  29. 29.
    Thomas JG, Bond DS, Phelan S, Hill JO, Wing RR. Weight-loss maintenance for 10 years in the national weight control registry. Am J Prev Med. 2014;46:17–23.CrossRefPubMedGoogle Scholar
  30. 30.
    Catenacci VA, Odgen L, Phelan S, Thomas JG, Hill J, Wing RR, et al. Dietary habits and weight maintenance success in high versus low exercisers in the national weight control registry. J Phys Act Health. 2014;11:1540–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Catenacci VA, Grunwald GK, Ingebrigtsen JP, Jakicic JM, McDermott MD, Phelan S, et al. Physical activity patterns using accelerometry in the national weight control registry. Obesity (Silver Spring). 2011;19:1163–70.CrossRefGoogle Scholar
  32. 32.
    Mitri J, Hamdy O. Diabetes medications and body weight. Expert Opin Drug Saf. 2009;8:573–84.CrossRefPubMedGoogle Scholar
  33. 33.
    Hamman RF, Wing RR, Edelstein SL, Lachin JM, Bray GA, Delahanty L, et al. Effect of weight loss with lifestyle intervention on risk of diabetes. Diabetes Care. 2006;29:2102–7.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Knowler WC, Fowler SE, Hamman RF, Christophi CA, Hoffman HJ, Brenneman AT, et al. 10-year follow-up of diabetes incidence and weight loss in the diabetes prevention program outcomes study. Lancet. 2009;374:1677–86.CrossRefPubMedGoogle Scholar
  35. 35.
    Chomentowski P, Dube JJ, Amati F, Stefanovic-Racic M, Zhu S, Toledo FG, et al. Moderate exercise attenuates the loss of skeletal muscle mass that occurs with intentional caloric restriction-induced weight loss in older, overweight to obese adults. J Gerontol A Biol Sci Med Sci. 2009;64:575–80.CrossRefPubMedGoogle Scholar
  36. 36.
    Wang X, Lyles MF, You T, Berry MJ, Rejeski WJ, Nicklas BJ. Weight regain is related to decreases in physical activity during weight loss. Med Sci Sports Exerc. 2008;40:1781–8.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Franz MJ, Boucher JL, Rutten-Ramos S, VanWormer JJ. Lifestyle weight-loss intervention outcomes in overweight and obese adults with type 2 diabetes: a systematic review and meta-analysis of randomized clinical trials. J Acad Nutr Diet. 2015;115:1447–63.CrossRefPubMedGoogle Scholar
  38. 38.
    Brown RJ, Wijewickrama RC, Harlan DM, Rother KI. Uncoupling intensive insulin therapy from weight gain and hypoglycemia in type 1 diabetes. Diabetes Technol Ther. 2011;13:457–60.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Colberg SR: Diabetic athlete’s handbook. Human Kinetics, 2009.Google Scholar
  40. 40.
    Dube MC, Lavoie C, Galibois I, Weisnagel SJ. Nutritional strategies to prevent hypoglycemia at exercise in diabetic adolescents. Med Sci Sports Exerc. 2012;44:1427–32.CrossRefPubMedGoogle Scholar
  41. 41.
    Castaneda-Gonzalez LM, Bacardi Gascon M, Jimenez Cruz A. Effects of low carbohydrate diets on weight and glycemic control among type 2 diabetes individuals: a systemic review of rct greater than 12 weeks. Nutr Hosp. 2011;26:1270–6.PubMedGoogle Scholar
  42. 42.
    Krebs JD, Parry Strong A, Cresswell P, Reynolds AN, Hanna A, Haeusler S. A randomised trial of the feasibility of a low carbohydrate diet vs standard carbohydrate counting in adults with type 1 diabetes taking body weight into account. Asia Pac J Clin Nutr. 2016;25:78–84.PubMedGoogle Scholar
  43. 43.
    Veum VL, Laupsa-Borge J, Eng O, Rostrup E, Larsen TH, Nordrehaug JE, et al. Visceral adiposity and metabolic syndrome after very high-fat and low-fat isocaloric diets: a randomized controlled trial. Am J Clin Nutr. 2017;105:85–99.CrossRefPubMedGoogle Scholar
  44. 44.
    Vandenbogaerde TJ, Hopkins WG. Effects of acute carbohydrate supplementation on endurance performance: a meta-analysis. Sports Med. 2011;41:773–92.CrossRefPubMedGoogle Scholar
  45. 45.
    Hawley JA, Lessard SJ. Exercise training-induced improvements in insulin action. Acta Physiol (Oxford). 2008;192:127–35.CrossRefGoogle Scholar
  46. 46.
    Jensen J, Rustad PI, Kolnes AJ, Lai YC. The role of skeletal muscle glycogen breakdown for regulation of insulin sensitivity by exercise. Front Physiol. 2011;2:112.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Bally L, Laimer M, Stettler C. Exercise-associated glucose metabolism in individuals with type 1 diabetes mellitus. Curr Opin Clin Nutr Metab Care. 2015;18:428–33.CrossRefPubMedGoogle Scholar
  48. 48.
    Baker LB, Rollo I, Stein KW, Jeukendrup AE. Acute effects of carbohydrate supplementation on intermittent sports performance. Forum Nutr. 2015;7:5733–63.Google Scholar
  49. 49.
    McKewen MW, Rehrer NJ, Cox C, Mann J. Glycaemic control, muscle glycogen and exercise performance in iddm athletes on diets of varying carbohydrate content. Int J Sports Med. 1999;20:349–53.CrossRefPubMedGoogle Scholar
  50. 50.
    Cermak NM, van Loon LJ. The use of carbohydrates during exercise as an ergogenic aid. Sports Med. 2013;43:1139–55.CrossRefPubMedGoogle Scholar
  51. 51.
    Yeo WK, Carey AL, Burke L, Spriet LL, Hawley JA. Fat adaptation in well-trained athletes: effects on cell metabolism. Appl Physiol Nutr Metab. 2011;36:12–22.CrossRefPubMedGoogle Scholar
  52. 52.
    Ortenblad N, Westerblad H, Nielsen J. Muscle glycogen stores and fatigue. J Physiol. 2013;591:4405–13.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Burke LM, Ross ML, Garvican-Lewis LA, Welvaert M, Heikura IA, Forbes SG, Mirtschin JG, Cato LE, Strobel N, Sharma AP, Hawley JA. Low carbohydrate, high fat diet impairs exercise economy and negates the performance benefit from intensified training in elite race walkers. J Physiol 2016.Google Scholar
  54. 54.
    Webster CC, Noakes TD, Chacko SK, Swart J, Kohn TA, Smith JA. Gluconeogenesis during endurance exercise in cyclists habituated to a long-term low carbohydrate high-fat diet. J Physiol. 2016;594:4389–405.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Richter EA, Hargreaves M. Exercise, glut4, and skeletal muscle glucose uptake. Physiol Rev. 2013;93:993–1017.CrossRefPubMedGoogle Scholar
  56. 56.
    Perrone C, Laitano O, Meyer F. Effect of carbohydrate ingestion on the glycemic response of type 1 diabetic adolescents during exercise. Diabetes Care. 2005;28:2537–8.CrossRefPubMedGoogle Scholar
  57. 57.
    Wahren J, Ekberg K. Splanchnic regulation of glucose production. Annu Rev Nutr. 2007;27:329–45.CrossRefPubMedGoogle Scholar
  58. 58.
    Colberg SR, Laan R, Dassau E, Kerr D. Physical activity and type 1 diabetes: time for a rewire? J Diabetes Sci Technol. 2015;9:609–18.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Riddell MC, Milliken J. Preventing exercise-induced hypoglycemia in type 1 diabetes using real-time continuous glucose monitoring and a new carbohydrate intake algorithm: an observational field study. Diabetes Technol Ther. 2011;13:819–25.CrossRefPubMedGoogle Scholar
  60. 60.
    Francescato MP, Stel G, Stenner E, Geat M. Prolonged exercise in type 1 diabetes: performance of a customizable algorithm to estimate the carbohydrate supplements to minimize glycemic imbalances. PLoS ONE. 2015;10:e0125220.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Adolfsson P, Mattsson S, Jendle J. Evaluation of glucose control when a new strategy of increased carbohydrate supply is implemented during prolonged physical exercise in type 1 diabetes. Eur J Appl Physiol. 2015;115:2599–607.CrossRefPubMedGoogle Scholar
  62. 62.
    Terada T, Wilson BJ, Myette-Comicronte E, Kuzik N, Bell GJ, McCargar LJ, et al. Targeting specific interstitial glycemic parameters with high-intensity interval exercise and fasted-state exercise in type 2 diabetes. Metabolism. 2016;65:599–608.CrossRefPubMedGoogle Scholar
  63. 63.
    Gomez AM, Gomez C, Aschner P, Veloza A, Munoz O, Rubio C, et al. Effects of performing morning versus afternoon exercise on glycemic control and hypoglycemia frequency in type 1 diabetes patients on sensor-augmented insulin pump therapy. J Diabetes Sci Technol. 2015;9:619–24.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Turner D, Luzio S, Gray BJ, Dunseath G, Rees ED, Kilduff LP, et al. Impact of single and multiple sets of resistance exercise in type 1 diabetes. Scand J Med Sci Sports. 2015;25:e99–109.CrossRefPubMedGoogle Scholar
  65. 65.
    Yardley JE, Kenny GP, Perkins BA, Riddell MC, Balaa N, Malcolm J, et al. Resistance versus aerobic exercise: acute effects on glycemia in type 1 diabetes. Diabetes Care. 2013;36:537–42.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Pritchett K, Pritchett R. Chocolate milk: a post-exercise recovery beverage for endurance sports. Med Sport Sci. 2012;59:127–34.CrossRefPubMedGoogle Scholar
  67. 67.
    Hernandez JM, Moccia T, Fluckey JD, Ulbrecht JS, Farrell PA. Fluid snacks to help persons with type 1 diabetes avoid late onset postexercise hypoglycemia. Med Sci Sports Exerc. 2000;32:904–10.CrossRefPubMedGoogle Scholar
  68. 68.
    Tsalikian E, Mauras N, Beck RW, Tamborlane WV, Janz KF, Chase HP, et al., Diabetes Research in Children Network Direcnet Study G. Impact of exercise on overnight glycemic control in children with type 1 diabetes mellitus. J Pediatr. 2005;147:528–34.Google Scholar
  69. 69.
    Pflipsen MC, Oh RC, Saguil A, Seehusen DA, Seaquist D, Topolski R. The prevalence of vitamin b(12) deficiency in patients with type 2 diabetes: A cross-sectional study. J Am Board Fam Med. 2009;22:528–34.CrossRefPubMedGoogle Scholar
  70. 70.
    Reinstatler L, Qi YP, Williamson RS, Garn JV, Oakley GP Jr. Association of biochemical b deficiency with metformin therapy and vitamin b supplements: the national health and nutrition examination survey, 1999–2006. Diabetes Care. 2012;35:327–33.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Sales CH, Pedrosa LF, Lima JG, Lemos TM, Colli C. Influence of magnesium status and magnesium intake on the blood glucose control in patients with type 2 diabetes. Clin Nutr. 2011;30:359–64.CrossRefPubMedGoogle Scholar
  72. 72.
    Djurhuus MS, Skott P, Vaag A, Hother-Nielsen O, Andersen P, Parving HH, et al. Hyperglycaemia enhances renal magnesium excretion in type 1 diabetic patients. Scand J Clin Lab Invest. 2000;60:403–9.CrossRefPubMedGoogle Scholar
  73. 73.
    Barbagallo M, Belvedere M, Dominguez LJ. Magnesium homeostasis and aging. Magnes Res. 2009;22:235–46.PubMedGoogle Scholar
  74. 74.
    Simmons D, Joshi S, Shaw J. Hypomagnesaemia is associated with diabetes: not pre-diabetes, obesity or the metabolic syndrome. Diabetes Res Clin Pract. 2010;87:261–6.CrossRefPubMedGoogle Scholar
  75. 75.
    American Dietetic Association, American College of Sports Medicine, Rodriguez NR, Di Marco NM, Langley S. American college of sports medicine position stand. Nutrition and athletic performance. Med Sci Sports Exerc. 2009;41:709–31.CrossRefGoogle Scholar
  76. 76.
    Yardley JE, Colberg SR. Update on management of type 1 diabetes and type 2 diabetes in athletes. Curr Sports med rep. 2017;16:38–44.CrossRefPubMedGoogle Scholar
  77. 77.
    Sharp RL. Role of whole foods in promoting hydration after exercise in humans. J Am Coll Nutr. 2007;26:592S–6S.CrossRefPubMedGoogle Scholar
  78. 78.
    Adrogue HJ, Madias NE. The impact of sodium and potassium on hypertension risk. Semin Nephrol. 2014;34:257–72.CrossRefPubMedGoogle Scholar
  79. 79.
    Joosten MM, Gansevoort RT, Mukamal KJ, Kootstra-Ros JE, Feskens EJ, Geleijnse JM, et al. Urinary magnesium excretion and risk of hypertension: the prevention of renal and vascular end-stage disease study. Hypertension. 2013;61:1161–7.CrossRefPubMedGoogle Scholar
  80. 80.
    Peacock OJ, Thompson D, Stokes KA. Voluntary drinking behaviour, fluid balance and psychological affect when ingesting water or a carbohydrate-electrolyte solution during exercise. Appetite. 2011;58:56–63.CrossRefPubMedGoogle Scholar
  81. 81.
    Tamis-Jortberg B, Downs DA Jr, Colten ME. Effects of a glucose polymer sports drink on blood glucose, insulin, and performance in subjects with diabetes. Diabetes Educ. 1996;22:471–87.CrossRefPubMedGoogle Scholar
  82. 82.
    Jiang X, Zhang D, Jiang W. Coffee and caffeine intake and incidence of type 2 diabetes mellitus: a meta-analysis of prospective studies. Eur J Nutr. 2014;53:25–38.CrossRefPubMedGoogle Scholar
  83. 83.
    Ding M, Bhupathiraju SN, Chen M, van Dam RM, Hu FB. Caffeinated and decaffeinated coffee consumption and risk of type 2 diabetes: a systematic review and a dose-response meta-analysis. Diabetes Care. 2014;37:569–86.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Lee S, Hudson R, Kilpatrick K, Graham TE, Ross R. Caffeine ingestion is associated with reductions in glucose uptake independent of obesity and type 2 diabetes before and after exercise training. Diabetes Care. 2005;28:566–72.CrossRefPubMedGoogle Scholar
  85. 85.
    Lane JD, Feinglos MN, Surwit RS. Caffeine increases ambulatory glucose and postprandial responses in coffee drinkers with type 2 diabetes. Diabetes Care. 2008;31:221–2.CrossRefPubMedGoogle Scholar
  86. 86.
    Robinson LE, Savani S, Battram DS, McLaren DH, Sathasivam P, Graham TE. Caffeine ingestion before an oral glucose tolerance test impairs blood glucose management in men with type 2 diabetes. J Nutr. 2004;134:2528–33.PubMedGoogle Scholar
  87. 87.
    Pedersen DJ, Lessard SJ, Coffey VG, Churchley EG, Wootton AM, Ng T, et al. High rates of muscle glycogen resynthesis after exhaustive exercise when carbohydrate is coingested with caffeine. J Appl Physiol. 1985;2008(105):7–13.Google Scholar
  88. 88.
    Zaharieva DP, Miadovnik LA, Rowan CP, Gumieniak RJ, Jamnik VK, Riddell MC. Effects of acute caffeine supplementation on reducing exercise-associated hypoglycaemia in individuals with type 1 diabetes mellitus. Diabet Med. 2015.Google Scholar
  89. 89.
    Olateju T, Begley J, Green DJ, Kerr D. Physiological and glycemic responses following acute ingestion of a popular functional drink in patients with type 1 diabetes. Can J Diabetes. 2015;39:78–82.CrossRefPubMedGoogle Scholar
  90. 90.
    Gualano B, Roschel H, Lancha-Jr AH, Brightbill CE, Rawson ES. In sickness and in health: the widespread application of creatine supplementation. Amino Acids. 2012;43:519–29.CrossRefPubMedGoogle Scholar
  91. 91.
    Gualano B, de Salles PV, Roschel H, Lugaresi R, Dorea E, Artioli GG, et al. Creatine supplementation does not impair kidney function in type 2 diabetic patients: a randomized, double-blind, placebo-controlled, clinical trial. Eur J Appl Physiol. 2011;111:749–56.CrossRefPubMedGoogle Scholar
  92. 92.
    Gualano B, De Salles Painneli V, Roschel H, Artioli GG, Neves M Jr, De Sa Pinto AL, et al. Creatine in type 2 diabetes: a randomized, double-blind, placebo-controlled trial. Med Sci Sports Exerc. 2011;43:770–8.CrossRefPubMedGoogle Scholar
  93. 93.
    Kim HJ, Kim CK, Carpentier A, Poortmans JR. Studies on the safety of creatine supplementation. Amino Acids. 2011;40:1409–18.CrossRefPubMedGoogle Scholar
  94. 94.
    Zaharieva DP, Riddell MC. Prevention of exercise-associated dysglycemia: a case study-based approach. Diabetes Spectr. 2015;28:55–62.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Colberg, S. et al.. Physical activity/exercise and diabetes: a position statement of the American Diabetes Association. 2016;39(11); 2065–79Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Old Dominion UniversityNorfolkUSA

Personalised recommendations