C. difficile Microbiome Manipulation



Clostridium difficile infection (CDI) is a healthcare-associated infection with significant mortality, morbidity, and cost. Despite efforts by healthcare providers to adhere to infection prevention and control guidelines, the incidence of CDI has been increasing. Since one of the risk factors for developing CDI is alteration of the microbiota of the gut by antimicrobials, manipulation of the human gut microbiome may be a reasonable strategy to prevent and control CDI. Probiotics, fecal microbiota transplantation, and purified bacteria cultures are potential approaches that utilize microbiome manipulation in the prevention and treatment of CDI.


Clostridium difficile infection Microbiome Probiotics Fecal microbiota transplantation Stool substitutes Hospital acquired infection 


  1. 1.
    Lucado J, Gould C, Elixhauser A. Clostridium difficile infections (CDI) in hospital stays, 2009. HCUP. 2012.Google Scholar
  2. 2.
    Gerding DN, LF. The epidemiology of Clostridium difficile infection inside and outside health care institutions. Infect Dis Clin N Am. 2015;29(1):37–50.CrossRefGoogle Scholar
  3. 3.
    CDC Press Releases. CDC. n.d.. http://www.cdc.gov/media/releases/2015/p0225-clostridium-difficile.html. Published January 1, 2016. Accessed 4 Mar 2016.
  4. 4.
    Magill SS, Edwards JR, Bamberg W, et al. Multistate point-prevalence survey of health care–associated infections. N Engl J Med. 2014;370:1198–208.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Johnson S. Recurrent Clostridium difficile infection: causality and therapeutic approaches. Int J Antimicrob Agents. 2009;33:S33–6.CrossRefPubMedGoogle Scholar
  6. 6.
    Barbut F. How to eradicate Clostridium difficile from the environment. J Hosp Infect. 2015;89(4):287–96.CrossRefPubMedGoogle Scholar
  7. 7.
    Sethi AK, Al-Nassir WN, Nerandzic MM, Bobulsky GS, Donskey CJ. Persistence of skin contamination and environmental shedding of Clostridium difficile during and after treatment of C. difficile infection. Infect Control Hosp Epidemiol. 2010;31(1):21–7.CrossRefPubMedGoogle Scholar
  8. 8.
    Rebmann T, Carrico RM, Association for Professionals in Infection Control and Epidemiology. Preventing Clostridium difficile infections: an executive summary of the association for professionals in infection control and epidemiology’s elimination guide. Am J Infect Control. 2011;39(3):239–42.CrossRefPubMedGoogle Scholar
  9. 9.
    Roberts K, Smith CF, Snelling AM, et al. Aerial dissemination of Clostridium difficile spores. BMC Infect Dis. 2008;8:7.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Rupnik M, Wilcox MH, Gerding DN. Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nat Rev Microbiol. 2009;29(1):37–50.Google Scholar
  11. 11.
    Guinane CM, Cotter PD. Role of the gut microbiota in health and chronic gastrointestinal disease: understanding a hidden metabolic organ. Therap Adv Gastroenterol. 2013;6(4):295–308.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Sekirov I, Russell SL, Antunes LC, Finlay BB. Gut microbiota in health and disease. Physiol Rev. 2010;90(3):859–904.CrossRefPubMedGoogle Scholar
  13. 13.
    Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207–14.CrossRefGoogle Scholar
  14. 14.
    Bäckhed F, Fraser CM, Ringel Y, et al. Defining a healthy human gut microbiome: current concepts, future directions, and clinical applications. Cell Host Microbe. 2014;12(5):611–22.CrossRefGoogle Scholar
  15. 15.
    Britton RA, Young VB. Role of the intestinal microbiota in resistance to colonization by Clostridium difficile. Gastroenterology. 2014;146(6):1547–53.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Brandt LJ. Fecal transplantation for the treatment of Clostridium difficile infection. Gastroenterol Hepatol. 2012;8(3):191–4.Google Scholar
  17. 17.
    Theriot CM, Young VB. Interactions between the gastrointestinal microbiome and Clostridium difficile. Annu Rev Microbiol. 2015;69:445–61.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Schubert AM, Sinani H, Schloss PD. Antibiotic-induced alterations of the murine gut microbiota and subsequent effects on colonization resistance against Clostridium difficile. MBio. 2015;6:4.CrossRefGoogle Scholar
  19. 19.
    Skraban J, Dzeroski S, Zenko B, et al. Gut microbiota patterns associated with colonization of different Clostridium difficile ribotypes. PLoS One. 2013;8(2):e58005.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Crow JR, Davis SL, Chaykosky DM, Smith TT, Smith JM. Probiotics and fecal microbiota transplant for primary and secondary prevention of Clostridium difficile infection. Pharmacotherapy. 2015;35(11):1016–25.CrossRefPubMedGoogle Scholar
  21. 21.
    Allen SJ. The potential of probiotics to prevent Clostridium difficile infection. Infect Dis Clin N Am. 2015;29(1):135–44.CrossRefGoogle Scholar
  22. 22.
    Hickson M, D’Souza AL, Muthu N, et al. Use of probiotic lactobacillus preparation to prevent diarrhoea associated with antibiotics: randomised double blind placebo controlled trial. BMJ. 2007;335:80–3.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Gao XW, Mubasher M, Fang CY, Reifer C, Miller LE. Dose-response efficacy of a proprietary probiotic formula of lactobacillus acidophilus CL1285 and lactobacillus casei LBC80R for antibiotic-associated diarrhea and Clostridium difficile-associated diarrhea prophylaxis in adult patients. Am J Gastroenterol. 2010;105(7):1636–41.CrossRefPubMedGoogle Scholar
  24. 24.
    Rafiq R. Prevention of Clostridium difficile (C. difficile) diarrhea with probiotic in hospitalized patients treated with antibiotics. Gastroenterology. 2007;132:A187.Google Scholar
  25. 25.
    Allen SJ, Wareham K, Wang D, et al. Lactobacilli and bifidobacteria in the prevention of antibiotic-associated diarrhoea and Clostridium difficile diarrhoea in older inpatients (PLACIDE): a randomised, double-blind, placebo-controlled, multicentre trial. Lancet. 2013;382(9900):1249–57.CrossRefPubMedGoogle Scholar
  26. 26.
    McFarland LV. Probiotics for the primary and secondary prevention of C. difficile infections: a meta-analysis and systematic review. Antibiotics. 2015;4:160–78.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Beausoleil M, Fortier N, Guénette S, et al. Effect of a fermented milk combining lactobacillus acidophilus CL1285 and lactobacillus casei in the prevention of antibiotic-associated diarrhea: a randomized, double-blind, placebo-controlled trial. Can J Gastroenterol. 2007;21(11):732–6.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Goldenberg JZ, Ma SS, Saxton JD, et al. Probiotics for the prevention of Clostridium difficile associated diarrhea in adults and children. Cochrane Database Syst Rev. 2013;5:1–150.Google Scholar
  29. 29.
    Lau CSM, CR. Probiotics are effective at preventing Clostridium difficile-associated diarrhea: a systematic review and meta-analysis. Int J Gen Med. 2016;9:27–37.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Kwok CS, Arthur AK, Anibueze CI, Singh S, Cavallazzi R, Loke YK. Risk of Clostridium difficile infection with acid suppressing drugs and antibiotics: meta-analysis. Am J Gastroenterol. 2012;107(7):1011–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Cohen SH, Gerding DN, Johnson S, et al. Clinical practice guidelines for Clostridium difficile infection in adults: 2010 update by the Society for Healthcare Epidemiology of America (SHEA) and the Infectious Diseases Society of America (IDSA). Infect Control Hosp Epidemiol. 2010;31(5):431–55.CrossRefPubMedGoogle Scholar
  32. 32.
    Surawicz CM, Brandt LJ, Binion DG, et al. Guidelines for diagnosis, treatment, and prevention of Clostridium difficile infections. Am J Gastroenterol. 2013;108(4):478–4.CrossRefPubMedGoogle Scholar
  33. 33.
    Ghantoji SS, Sail K, Lairson DR, DuPont HL, Garey KW. Economic healthcare costs of Clostridium difficile infection: a systematic review. J Hosp Infect. 2010;74(4):309–18.CrossRefPubMedGoogle Scholar
  34. 34.
    McFarland LV, Surawicz CM, Greenberg RN, et al. A randomized placebo-controlled trial of saccharomyces boulardii in combination with standard antibiotics for Clostridium difficile disease. JAMA. 1994;271(24):1913–8.CrossRefPubMedGoogle Scholar
  35. 35.
    Surawicz CM, McFarland LV, Greenberg RN, et al. The search for a better treatment for recurrent Clostridium difficile disease: use of high-dose vancomycin combined with saccharomyces boulardii. Clin Infect Dis 2000. 2000;31(4):1012–7.CrossRefGoogle Scholar
  36. 36.
    McFarland LV. Meta-analysis of probiotics for the prevention of antibiotic associated diarrhea and the treatment of Clostridium difficile disease. Am J Gastroenterol. 2006;101(4):812–22.CrossRefPubMedGoogle Scholar
  37. 37.
    Dendukuri N, Costa V, McGregor M, Brophy JM. Probiotic therapy for the prevention and treatment of Clostridium difficile-associated diarrhea: a systematic review. CMAJ. 2005;173(2):167–70.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Pillai A, Nelson R. Probiotics for treatment of Clostridium difficile-associated colitis in adults. Cochrane Database Syst Rev. 2008;23(1):CD004611.Google Scholar
  39. 39.
    Schoster A, Kokotovic B, Permin A, Pedersen PD, Dal Bello F, Guardabassi L. In vitro inhibition of Clostridium difficile and clostridium perfringens by commercial probiotic strains. Anaerobe. 2013;20:36.CrossRefPubMedGoogle Scholar
  40. 40.
    Barker A, Duster M, Valentine S, Archbald-Pannone L, Guerrant R, Safdar N. Probiotics for Clostridium difficile infection in adults (PICO): study protocol for a double-blind, randomized controlled trial. Contemp Clin Trials. 2015;44:26–32.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Auclair J, Frappier M, Millette M. Lactobacillus acidophilus CL1285, lactobacillus casei LBC80R, and lactobacillus rhamnosus CLR2 (bio-K+): characterization, manufacture, mechanisms of action, and quality control of a specific probiotic combination for primary prevention of Clostridium difficile infection. CID. 2015:S135–43.Google Scholar
  42. 42.
    Roberfroid M. Prebiotics: the concept revisited. J Nutr. 2007;137(3):830S–7S.PubMedGoogle Scholar
  43. 43.
    Vyas U, Ranganathan N. Probiotics, prebiotics, and synbiotics: Gut and beyond. Gastroenterol Res Prac. 2012.Google Scholar
  44. 44.
    de Vrese M, Schrezenmeir J. Probiotics, prebiotics, and synbiotics. Adv Biochem Eng Biotechnol. 2008;111:1–66.PubMedGoogle Scholar
  45. 45.
    Rineh A, Kelso MJ, Vatansever F, Tegos GP, Hamblin MR. Clostridium difficile infection: molecular pathogenesis and novel therapeutics. Expert Rev Anti-Infect Ther. 2014;12(1):131–50.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Cammarota G, Ianiro G, Gasbarrini A. Fecal microbiota transplantation for the treatment of Clostridium difficile infection: a systematic review. J Clin Gastroenterol. 2014;48(8):693–702.CrossRefPubMedGoogle Scholar
  47. 47.
    Grehan MJ, Borody TJ, Leis SM, Campbell J, Mitchell H, Wettstein A. Durable alteration of the colonic microbiota by the administration of donor fecal flora. J Clin Gastroenterol. 2010;44(8):551–61.CrossRefPubMedGoogle Scholar
  48. 48.
    Van Nood E, Vrieze A, Nieuwdorp M, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med. 2013;368:407–15.CrossRefPubMedGoogle Scholar
  49. 49.
    Shankar V, Hamilton MJ, Khoruts A, et al. Species and genus level resolution analysis of gut microbiota in Clostridium difficile patients following fecal microbiota transplantation. Microbiome. 2014;13(2).Google Scholar
  50. 50.
    Kassam Z, Lee CH, Yuan Y, Hunt RH. Fecal microbiota transplantation for Clostridium difficile infection: systematic review and meta-analysis. Am J Gastroenterol. 2013;108(4):500–8.CrossRefPubMedGoogle Scholar
  51. 51.
    Bakken JS, Polgreen PM, Beekmann SE, Susan E, Riedo FX, Streit JA. Treatment approaches including fecal microbiota transplantation for recurrent Clostridium difficile infection (RCDI) among infectious disease physicians. Anaerobe 2013; 24:20–4.Google Scholar
  52. 52.
    Youngster I, Russell GH, Pindar C, Ziv-Baran T, Sauk J, Hohmann EL. Oral, capsulized, frozen fecal microbiota transplantation for relapsing Clostridium difficile infection. JAMA. 2014;312(17):1772–8.CrossRefPubMedGoogle Scholar
  53. 53.
    Burns DA, Heap JT, Minton NP. Clostridium difficile spore germination: an update. Res Microbiol. 2010;161(9):730–4.CrossRefPubMedGoogle Scholar
  54. 54.
    Damman CJ, Miller SI, Surawicz CZ, Zisman TL. The microbiome and inflammatory bowel disease: is there a therapeutic role for fecal microbiota transplantation? Am J Gastroenterol. 2012;107(10):1452–9.CrossRefPubMedGoogle Scholar
  55. 55.
    Gough E, Shaikh H, Manges AR. Systematic review of intestinal microbiota transplantation (fecal bacteriotherapy) for recurrent Clostridium difficile infection. Clin Infect Dis. 2011;53(10):994–1002.CrossRefPubMedGoogle Scholar
  56. 56.
    Jangi S, Lamont JT. Asymptomatic colonization by Clostridium difficile in infants: implications for disease in later life. J Pediatr Gastroenterol Nutr. 2010;51(1):2–7.CrossRefPubMedGoogle Scholar
  57. 57.
    Khanna S, Pardi DS, Kelly CR, et al. A novel microbiome therapeutic increases gut microbial diversity and prevents recurrent Clostridium difficile infection. JID. 2016;214:173–81.CrossRefPubMedGoogle Scholar
  58. 58.
    Pierog A, Mencin A, Reilly NR. Fecal microbiota transplantation in children with recurrent Clostridium difficile infection. Pediatr Infect Dis J. 2014;33(11):1198–200.CrossRefPubMedGoogle Scholar
  59. 59.
    Walia R, Garg S, Song Y, et al. Efficacy of fecal microbiota transplantation in 2 children with recurrent Clostridium difficile infection and its impact on their growth and gut microbiome. J Pediatr Gastroenterol Nutr. 2014;59(5):565–70.CrossRefPubMedGoogle Scholar
  60. 60.
    Di Bella S, Gouliouris T, Petrosillo N. Fecal microbiota transplantation (FMT) for Clostridium difficile infection: focus on immunocompromised patients. J Infect Chemother. 2015;21(4):230–7.CrossRefPubMedGoogle Scholar
  61. 61.
    Rubin MR, Bilezikian JP, Birken S, et al. Human chorionic gonadotropin measurements in parathyroid carcinoma. Eur J Endocrinol. 2008;159(4):469–74.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Weingarden AR, Dosa PI, DeWinter E, et al. Changes in colonic bile acid composition following fecal microbiota transplantation are sufficient to control Clostridium difficile germination and growth. PLoS One. 2016;11(1).Google Scholar
  63. 63.
    Howerton A, Patra M, Abel-Santos E. A new strategy for the prevention of Clostridium difficile infection. J Infect Dis. 2013;207(10):1498–504.CrossRefPubMedGoogle Scholar
  64. 64.
    Theriot CM, Koenigsknecht MJ, Carlson PE Jr, et al. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat Commun. 2014;5:3114.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Ferreyra JA, Wu KJ, Hryckowian AJ, Bouley DM, Weimer BC, Sonnenburg JL. Gut microbiota-produced succinate promotes C. difficile infection after antibiotic treatment or motility disturbance. Cell Host Microbe. 2014;16(6):770–7.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Antharam VC, Li EC, Ishmael A, et al. Intestinal dysbiosis and depletion of butyrogenic bacteria in Clostridium difficile infection and nosocomial diarrhea. J Clin Microbiol. 2013;51(9):2884–92.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Seekatz AM, Young VB. Clostridium difficile and the microbiota. J Clin Invest. 2014;124(10):4182–48.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Bangar H. Intestinal stem cell injury caused by Clostridium difficile is averted by Bacteroidales-induced crypt defenses. 2015.Google Scholar
  69. 69.
    Wortman JR, Lachey J, Lombardo M-J, et al. Design and evaluation of SER-262: a fermentation-derived microbiome therapeutic for the prevention of recurrence in patients with primary Clostridium difficile infection. Cambridge, MA: Seres Therapeutics; 2016.Google Scholar
  70. 70.
    Mullard A. Leading microbiome-based therapeutic falters in phase II trial. Nat Rev Drug Discov. 2016;15(595).Google Scholar
  71. 71.
    Bakken JS, Borody T, Brandt LJ, et al. Perspective: treating Clostridium difficile infection with fecal microbiota. Clin Gastroenterol Hepatol. 2011;9:1044–9. doi: 10.1016/j.cgh.2011.08.014.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Debast SB, Bauer MP, Kuijper EJ. European society of clinical microbiology and infectious diseases: update of the treatment guidance document for Clostridium difficile infection. Clin Microbiol Infect. 2014;20:1–26.CrossRefPubMedGoogle Scholar
  73. 73.
    Tvede M, Rask-Madsen J. Bacteriotherapy for chronic relapsing Clostridium difficile diarrhoea in six patients. Lancet. 1989;8648(1):1156–60.CrossRefGoogle Scholar
  74. 74.
    Petrof EO, Gloor GB, Vanner SJ, et al. Stool substitute transplant therapy for the eradication of Clostridium difficile infection: ‘RePOOPulating’ the gut. Microbiome. 2013;1(1).Google Scholar
  75. 75.
    Buffie CG, Bucci V, Stein RR, et al. Precision microbiome restoration of bile acid-mediated resistance to Clostridium difficile. Nature. 2015;517(7533):205–8.CrossRefPubMedGoogle Scholar
  76. 76.
    Reeves AE, Koenigsknecht MJ, Bergin IL, Young VB. Suppression of Clostridium difficile in the gastrointestinal tracts of germfree mice inoculated with a murine isolate from the family lachnospiraceae. Infect Immun. 2012;80(11):3786–94.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Division of Geographic Medicine and Infectious DiseasesTufts Medical CenterBostonUSA

Personalised recommendations