Skip to main content

Antimicrobial Textiles and Infection Prevention: Clothing and the Inanimate Environment

Abstract

Textiles are ubiquitous and an essential part of human society. Within the hospital environment, textiles have many functions, such as the clothing worn by patients and healthcare workers, the towels and cloths used to contain and mop up fluids, drapes used to isolate and maintain sterility during surgery, furnishings such as upholstered chairs as well as curtains, carpets and also bedding. As part of the inanimate environment, textiles could act as a potential source of infection (Borkow G, Gabbay J. Med Hypotheses 70(5):990–994, 2008; Wiener-Well Y et al Am J Infect Control 39(7):555–559, 2011). This is because microorganisms can be transferred from an infected patient, a healthcare worker or some environmental source and persist within the textile then to be transferred to a susceptible individual. Frequent and effective laundering is the most common and most effective strategy for reducing microbial burden on textiles (Fijan S, Turk SS. Int J Environ Res Public Health 9(9):3330–3343, 2012). However, not all textiles in the hospital setting are frequently laundered (e.g. privacy curtains) or easily laundered (e.g. upholstery on chairs). As well, within a typical work shift (8–12 h) the microbial load on a healthcare workers’ clothing could become significant (Burden M et al J Hosp Med 6(4):177–182, 2011), and thus the transmission of pathogenic microorganisms may be possible. A possible solution to the problem of relying solely on cleaning involves integrating biocidal textiles into the hospital environment in order to reduce the microbial burden to levels low enough to reduce the rate of hospital-acquired infections (HAIs) (Borkow G, Gabbay J. Med Hypotheses 70(5):990–994, 2008). The purpose of this chapter is to review the literature pertaining to contamination of hospital textiles by potentially pathogenic microorganisms and the related transmission of HAIs, describe the antimicrobials agents incorporated in textiles, describe the in vitro standard test methods used to assess antimicrobial efficacy and evaluate the effectiveness of antimicrobial-treated textiles in the hospital environment.

Keywords

  • Textiles
  • Clothing
  • Antimicrobial
  • Hospital-acquired infection
  • Antimicrobial efficacy tests

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-60980-5_13
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-60980-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)

References

  1. Borkow G, Gabbay J. Biocidal textiles can help fight nosocomial infections. Med Hypotheses. 2008;70(5):990–4. doi:10.1016/j.mehy.2007.08.025.

    CAS  CrossRef  PubMed  Google Scholar 

  2. Wiener-Well Y, Galuty M, Rudensky B, Schlesinger Y, Attias D, Yinnon AM. Nursing and physician attire as possible source of nosocomial infections. Am J Infect Control. 2011;39(7):555–9. doi:10.1016/j.ajic.2010.12.016.

    CrossRef  PubMed  Google Scholar 

  3. Fijan S, Turk SS. Hospital textiles, are they a possible vehicle for healthcare-associated infections? Int J Environ Res Public Health. 2012;9(9):3330–43. doi:10.3390/ijerph9093330.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  4. Burden M, Cervantes L, Weed D, Keniston A, Price CS, Albert RK. Newly cleaned physician uniforms and infrequently washed white coats have similar rates of bacterial contamination after an 8-hour workday: a randomized controlled trial. J Hosp Med. 2011;6(4):177–82. doi:10.1002/jhm.864.

    CrossRef  PubMed  Google Scholar 

  5. Bureau-Chalot F, Piednoir E, Camus J, Bajolet O. Microbiologic quality of linen and linen rooms in short-term care units. J Hosp Infect. 2004;56(4):328–9. doi:10.1016/j.jhin.2003.12.016.

    CrossRef  Google Scholar 

  6. Dancer SJ. How do we assess hospital cleaning? A proposal for microbiological standards for surface hygiene in hospitals. J Hosp Infect. 2004;56(1):10–5. doi:10.1016/j.jhin.2003.09.017.

    CAS  CrossRef  PubMed  Google Scholar 

  7. Perry C, Marshall R, Jones E. Bacterial contamination of uniforms. J Hosp Infect. 2001;48(3):238–41. doi:10.1053/jhin.2001.0962.

    CAS  CrossRef  PubMed  Google Scholar 

  8. Treakle AM, Thom KA, Furuno JP, Strauss SM, Harris AD, Perencevich EN. Bacterial contamination of health care workers’ white coats. Am J Infect Control. 2009;37(2):101–5. doi:10.1016/j.ajic.2008.03.009.

    CrossRef  PubMed  Google Scholar 

  9. Wong D, Nye K, Hollis P. Microbial flora on doctors’ white coats. BMJ. 1991;303:1602–4.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  10. Albrich WC, Harbarth S. Health-care workers: source, vector, or victim of MRSA? Lancet Infect Dis. 2008;8(5):289–301. doi:10.1016/S1473-3099(08)70097-5.

    CrossRef  PubMed  Google Scholar 

  11. Ohl M, Schweizer M, Graham M, Heilmann K, Boyken L, Diekema D. Hospital privacy curtains are frequently and rapidly contaminated with potentially pathogenic bacteria. Am J Infect Control. 2012;40(10):904–6. doi:10.1016/j.ajic.2011.12.017.

    CrossRef  PubMed  Google Scholar 

  12. Dohmae S, Okubo T, Higuchi W, et al. Bacillus cereus nosocomial infection from reused towels in Japan. J Hosp Infect. 2008;69(4):361–7. doi:10.1016/j.jhin.2008.04.014.

    CAS  CrossRef  PubMed  Google Scholar 

  13. Weernink A, Severin WPJ, Tjernberg I, Dijkshoorn L. Pillows, an unexpected source of Acinetobacter. J Hosp Infect. 1995;29(3):189–99.

    CAS  CrossRef  PubMed  Google Scholar 

  14. Trillis F, Eckstein EC, Budavich R, Pultz MJ, Donskey CJ. Contamination of hospital curtains with health care-associated pathogens. Infect Control Hosp Epidemiol. 2008;29(11):48–50. doi:10.1086/591863.

    CrossRef  Google Scholar 

  15. Dancer SJ. Importance of the environment in methicillin-resistant Staphylococcus aureus acquisition: the case for hospital cleaning. Lancet Infect Dis. 2008;8(2):101–13. doi:10.1016/S1473-3099(07)70241-4.

    CrossRef  PubMed  Google Scholar 

  16. Neely AN, Maley MP. Survival of enterococci and staphylococci on hospital fabrics and plastic. J Clin Microbiol. 2000;38(2):724–6. doi:10.1016/S0001-2092(06)61994-7.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Shiomori T, Miyamoto H, Makishima K, et al. Evaluation of bedmaking-related airborne and surface methicillin-resistant Staphylococcus aureus contamination. J Hosp Infect. 2002;50(1):30–5. doi:10.1053/jhin.2001.1136.

    CAS  CrossRef  PubMed  Google Scholar 

  18. Brunton WAT. Infection and hospital laundry. Lancet. 1995;345(8964):1574–5.

    CAS  CrossRef  PubMed  Google Scholar 

  19. Sasahara T, Hayashi S, Morisawa Y, Sakihama T, Yoshimura A, Hirai Y. Bacillus cereus bacteremia outbreak due to contaminated hospital linens. Eur J Clin Microbiol Infect Dis. 2011;30(2):219–26. doi:10.1007/s10096-010-1072-2.

    CAS  CrossRef  PubMed  Google Scholar 

  20. Wright SN, Gerry JS, Busowski MT, et al. Gordonia bronchialis sternal wound infection in 3 patients following open heart surgery: intraoperative transmission from a healthcare worker. Infect Control Hosp Epidemiol. 2012;33(12):1238–41. doi:10.1086/668441.

    CrossRef  PubMed  Google Scholar 

  21. Duffy J, Harris J, Gade L, et al. Mucormycosis outbreak associated with hospital linens. Pediatr Infect Dis J. 2014;33(5):472–6. doi:10.1097/INF.0000000000000261.

    CrossRef  PubMed  Google Scholar 

  22. Thomas MC, Giedinghagen DH, Hoff GL. An outbreak of scabies among employees in a hospital-associated commercial laundry. Infect Control. 1987;8(10):427–9. doi:10.1017/S0195941700066613.

    CAS  CrossRef  PubMed  Google Scholar 

  23. Shah PC, Krajden S, Kane J, Summerbell RC. Tinea corporis caused by Microsporum canis: report of a nosocomial outbreak. Eur J Epidemiol. 1988;4(1):33–8.

    CAS  CrossRef  PubMed  Google Scholar 

  24. Standaert SM, Hutcheson RH, Schaffner W. Nosocomial transmission of Salmonella gastroenteritis to laundry workers in a nursing home. Infect Control Hosp Epidemiol. 1994;15(1):22–6. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8133005

  25. Munoz-Price LS, Arheart KL, Lubarsky DA, Birnbach DJ. Differential laundering practices of white coats and scrubs among health care professionals. Am J Infect Control. 2013;41(6):565–7. doi:10.1016/j.ajic.2012.06.012.

    CrossRef  PubMed  Google Scholar 

  26. Loh W, Ng VV, Holton J. Bacterial flora on the white coats of medical students. J Hosp Infect. 2000;45(1):65–8. doi:10.1053/jhin.1999.0702.

    CAS  CrossRef  PubMed  Google Scholar 

  27. Pilonetto M, Rosa EAR, Brofman PRS, et al. Hospital gowns as a vehicle for bacterial dissemination in an intensive care unit. Braz J Infect Dis. 2004;8(3):206–10. doi:/S1413-86702004000300003

    CrossRef  PubMed  Google Scholar 

  28. Boyce JM, Potter-Bynoe G, Chenevert C, King T. Environmental contamination due to methicillin-resistant Staphylococcus aureus: possible infection control implications. Infect Control Hosp Epidemiol. 1997;18(9):622–7. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9309433

  29. Braswell ML, Spruce L. Implementing AORN recommended practices for surgical attire. AORN J. 2012;95(1):122–40. doi:10.1016/j.aorn.2011.10.017.

    CrossRef  PubMed  Google Scholar 

  30. Wilson JA, Loveday HP, Hoffman PN, Pratt RJ. Uniform: an evidence review of the microbiological significance of uniforms and uniform policy in the prevention and control of healthcare-associated infections. Report to the Department of Health (England). J Hosp Infect. 2007;66(4):301–7. doi:10.1016/j.jhin.2007.03.026.

    CAS  CrossRef  PubMed  Google Scholar 

  31. Wilkoff LJ, Westbrook L, Dixon GJ. Factors affecting the persistence of Staphylococcus aureus on fabrics. Appl Microbiol. 1969;17(2):268–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Borkow G, Monk A. Fighting nosocomial infections with biocidal non-intrusive hard and soft surfaces. World J Clin Infect Dis. 2012;2(4):77–90. doi:10.5527/wjn.v4.i3.379.

    CrossRef  Google Scholar 

  33. McMurry LM, Oethinger M, Levy SB. Triclosan targets lipid synthesis. Nature. 1998;394(6693):531–2. doi:10.1038/28970.

    CAS  CrossRef  PubMed  Google Scholar 

  34. Levy SB. Antibiotic and antiseptic resistance: impact on public health. Pediatr Infect Dis J. 2000;19(10):S120–2. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11052402

  35. Braoudaki M, Hilton AC. Adaptive resistance to biocides in Salmonella enterica and Escherichia coli O157 and cross-resistance to Antimicrobial agents. J Clin Microbiol. 2004;42(1):73–8. doi:10.1128/JCM.42.1.73.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  36. Mcmurry LM, Mcdermott PF, Levy SB, Murry LMMC, Dermott PFMC. Genetic evidence that InhA of Mycobacterium smegmatis is a target triclosan. Antimicrob Agents Chemother. 1999;43(3):711–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Windler L, Height M, Nowack B. Comparative evaluation of antimicrobials for textile applications. Environ Int. 2013;53:62–73. doi:10.1016/j.envint.2012.12.010.

    CAS  CrossRef  PubMed  Google Scholar 

  38. Schettler T. Antimicrobials in hospital furnishings: do they help reduce healthcare-associated infections? 2016. Available at: http://sehn.org/wp-content/uploads/2016/03/Antimicrobials-Report-2016.pdf.

  39. Thorpe B. Chemicals in consumer products are draining trouble into the Great Lakes ecosystem. Canadian Environmental Law Association Toronto; 2014.

    Google Scholar 

  40. Borkow G, Gabbay J. Copper as a biocidal tool. Curr Med Chem. 2005;12(18):2163–75. doi:10.2174/0929867054637617.

    CAS  CrossRef  PubMed  Google Scholar 

  41. Monteiro DR, Gorup LF, Takamiya AS, Ruvollo-Filho AC, de Camargo ER, Barbosa DB. The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. Int J Antimicrob Agents. 2009;34(2):103–10. doi:10.1016/j.ijantimicag.2009.01.017.

    CAS  CrossRef  PubMed  Google Scholar 

  42. Gao Y, Cranston R. Recent advances in antimicrobial treatments of textiles. Text Res J. 2008;78(1):60–72. doi:10.1177/0040517507082332.

    CAS  CrossRef  Google Scholar 

  43. Textiles Intelligence Ltd. Antimicrobial fibres, fabrics and apparel: innovative weapons against infection. Perform Appar Mark. 2013;47:25–57.

    Google Scholar 

  44. Lorenz C, Windler L, Von Goetz N, et al. Characterization of silver release from commercially available functional (nano) textiles. Chemosphere. 2012;89(7):817–24. doi:10.1016/j.chemosphere.2012.04.063.

    CAS  CrossRef  PubMed  Google Scholar 

  45. Gabbay J, Borkow G, Mishal J, Magen E, Zatcoff R, Shemer-Avni Y. Copper oxide impregnated textiles with potent biocidal activities. J Ind Text. 2006;35(4):323–35. doi:10.1177/1528083706060785.

    CAS  CrossRef  Google Scholar 

  46. International Copper Association. Protection is about the person, not the product. 2015. Available at: http://www.antimicrobialcopper.org/uk/public-health-claims. Accessed 27 May 2016.

  47. Humphreys H. Self-disinfecting and microbiocide-impregnated surfaces and fabrics: what potential in interrupting the spread of healthcare-associated infection? Clin Infect Dis. 2014;58(6):848–53. doi:10.1093/cid/cit765.

    CrossRef  PubMed  Google Scholar 

  48. Li Y, Leung P, Yao L, Song QW, Newton E. Antimicrobial effect of surgical masks coated with nanoparticles. J Hosp Infect. 2006;62(1):58–63. doi:10.1016/j.jhin.2005.04.015.

    CAS  CrossRef  PubMed  Google Scholar 

  49. Messaoud M, Chadeau E, Chaudouët P, Oulahal N, Langlet M. Quaternary ammonium-based composite particles for antibacterial finishing of cotton-based textiles. J Mater Sci Technol. 2014;30(1):19–29. doi:10.1016/j.jmst.2013.09.012.

    CAS  CrossRef  Google Scholar 

  50. McDonnell G, Russell AD. Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev. 1999;12(1):147–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Schneider PM. New technologies in sterilization and disinfection. Am J Infect Control. 2013;41(5):S81–6. doi:10.1016/j.ajic.2012.12.003.

    CrossRef  PubMed  Google Scholar 

  52. Chen-Yu JH, Eberhardt DM, Kincade DH. Antibacterial and laundering properties of AMS and PHMB as finishing agents on fabric for health care workers’ uniforms. Cloth Text Res J. 2007;25(3):258–72. doi:10.1177/0887302X07303625.

    CrossRef  Google Scholar 

  53. Simoncic B, Tomsic B. Structures of novel antimicrobial agents for textiles – a review. Text Res J. 2010;80(16):1721–37. doi:10.1177/0040517510363193.

    CAS  CrossRef  Google Scholar 

  54. Moore K, Gray D. Using PHMB antimicrobial to p0revent wound infection. Wound UK. 2007;3(2):96–102.

    Google Scholar 

  55. Butcher M. PHMB: an effective antimicrobial in wound bioburden management. Br J Nurs. 2012;21(12):S16–21.

    CrossRef  PubMed  Google Scholar 

  56. Kawabata A, Taylor JA. The effect of reactive dyes upon the uptake and antibacterial efficacy of poly(hexamethylene biguanide) on cotton. Part 3: reduction in the antibacterial efficacy of poly(hexamethylene biguanide) on cotton, dyed with bis(monochlorotriazinyl) reactive dyes. Carbohydr Polym. 2007;67(3):375–89. doi:10.1016/j.carbpol.2006.06.022.

    CAS  CrossRef  Google Scholar 

  57. Sun Y, Sun G. Durable and regenerable antimicrobial textile materials prepared by a continuous grafting process. J Appl Polym Sci. 2002;84(8):1592–9. doi:10.1002/app.10456.

    CAS  CrossRef  Google Scholar 

  58. Kenawy ER, Worley SD, Broughton R. The chemistry and applications of antimicrobial polymers: a state-of-the-art review. Biomacromolecules. 2007;8(5):1359–84. doi:10.1021/bm061150q.

    CAS  CrossRef  Google Scholar 

  59. Liu S, Sun G. Durable and regenerable biocidal polymers: acyclic N-halamine cotton cellulose. Ind Eng Chem Res. 2006;45(19):6477–82. doi:10.1021/ie060253m.

    CAS  CrossRef  Google Scholar 

  60. He WD, Pan CY, Lu T. Novel regenerable N-halamine polymeric biocides. I. Synthesis, characterization, and antibacterial activity of hydantoin-containing polymers. J Appl Polym Sci. 2001;80(13):2460–7. doi:10.1002/app.1353.

    CrossRef  Google Scholar 

  61. Sun Y, Sun G. Grafting hydantoin-containing monomers onto cotton cellulose. J Appl Polym Sci. 2001;81:617–24.

    CAS  CrossRef  Google Scholar 

  62. Sun G, Worley SD. Chemistry of durable and regenerable biocidal textiles. J Chem Educ. 2005;82(1):60. doi:10.1021/ed082p60.

    CAS  CrossRef  Google Scholar 

  63. Tanner BD. Antimicrobial fabrics – issues and opportunities in the era of antibiotic resistance. AATCC Rev. 2009;9(11):30–3.

    Google Scholar 

  64. International Organization for Standardization. ISO 20743: textiles – determination of antibacterial activity of textile products. Geneva; 2013.

    Google Scholar 

  65. Tomsic B, Simoncic B, Orel B, et al. Sol-gel coating of cellulose fibres with antimicrobial and repellent properties. J Sol-Gel Sci Technol. 2008;47(1):44–57. doi:10.1007/s10971-008-1732-1.

    CAS  CrossRef  Google Scholar 

  66. Risti T, Fras L, Novak M, et al. Antimicrobial efficiency of functionalized cellulose fibres as potential medical textiles. In: Méndez-Vilas A, editor. Science against microbial pathogens: communicating current research and technological advances. Badajoz: Formatex; 2011. p. 36–51.

    Google Scholar 

  67. McQueen R, Keelan M, Kannayiram S. Determination of antimicrobial efficacy for textile products against odor-causing bacteria. AATCC Rev. 2010;10(4):58–63.

    CAS  Google Scholar 

  68. Kulthong K, Srisung S, Boonpavanitchakul K, Kangwansupamonkon W, Maniratanachote R. Determination of silver nanoparticle release from antibacterial fabrics into artificial sweat. Part Fibre Toxicol. 2010;7(1):8. doi:10.1186/1743-8977-7-8.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  69. McQueen RH, Keelan M, Xu Y, Mah T. In vivo assessment of odour retention in an antimicrobial silver chloride-treated polyester textile. J Text Inst. 2013;104(1):108–17. doi:10.1080/00405000.2012.697623.

    CAS  CrossRef  Google Scholar 

  70. Alvarez E, Uslan DZ, Malloy T, Sinsheimer P, Godwin H. It is time to revise our approach to registering antimicrobial agents for health care settings. Am J Infect Control. 2015;44:228–32. doi:10.1016/j.ajic.2015.09.015.

    CrossRef  PubMed  Google Scholar 

  71. Bearman GML, Rosato A, Elam K, et al. A crossover trial of antimicrobial scrubs to reduce methicillin-resistant Staphylococcus aureus burden on healthcare worker apparel. Infect Control Hosp Epidemiol. 2012;33(3):268–75. doi:10.1086/664045.

    CrossRef  PubMed  Google Scholar 

  72. Schweizer M, Graham M, Ohl M, Heilmann K, Boyken L, Diekema D. Novel hospital curtains with antimicrobial properties: a randomized, controlled trial. Infect Control Hosp Epidemiol. 2012;33(11):1081–5. doi:10.1086/668022.

    CrossRef  PubMed  Google Scholar 

  73. Taylor L, Phillips P, Hastings R. Reduction of bacterial contamination in a healthcare environment by silver antimicrobial technology. J Infect Prev. 2009;10(1):6–12. doi:10.1177/1757177408099083.

    CrossRef  Google Scholar 

  74. Burden M, Keniston A, Frank MG, et al. Bacterial contamination of healthcare workers’ uniforms: a randomized controlled trial of antimicrobial scrubs. J Hosp Med. 2013;8(7):380–5. doi:10.1002/jhm.2051.

    CrossRef  PubMed  Google Scholar 

  75. Boutin MA, Thom KA, Zhan M, Johnson JK. A randomized crossover trial to decrease bacterial contamination on hospital scrubs. Infect Control Hosp Epidemiol. 2014;35(11):1411–3. doi:10.1086/678426.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  76. Lazary A, Weinberg I, Vatine JJ, et al. Reduction of healthcare-associated infections in a long-term care brain injury ward by replacing regular linens with biocidal copper oxide impregnated linens. Int J Infect Dis. 2014;24:23–9. doi:10.1016/j.ijid.2014.01.022.

    CAS  CrossRef  PubMed  Google Scholar 

  77. Renaud FNR, Dore J, Freney HJ, Coronel B, Dusseau JY. Evaluation of antibacterial properties of a textile product with antimicrobial finish in a hospital environment. J Ind Text. 2006;36(1):89–94. doi:10.1177/1528083706066438.

    CAS  CrossRef  Google Scholar 

  78. Muller MP, MacDougall C, Lim M, et al. Antimicrobial surfaces to prevent healthcare-associated infections: a systematic review. J Hosp Infect. 2016;92(1):7–13. doi:10.1016/j.jhin.2015.09.008.

    CAS  CrossRef  PubMed  Google Scholar 

  79. Sifri CD, Burke GH, Enfield KB. Reduced health care-associated infections in an acute care community hospital using a combination of self-disinfecting copper-impregnated composite hard surfaces and linens. Am J Infect Control. 2016;44(12):1565–1571. doi: 10.1016/j.ajic.2016.07.007.

  80. Marcus EL, Yosef H, Borkow G, Caine Y, Sasson A, Moses AE. Reduction of health care-associated infection indicators by copper oxide-impregnated textiles: Crossover, double-blind controlled study in chronic ventilator-dependent patients. Am J Infect Control. 2017;45(4):401–403. doi:10.1016/j.ajic.2016.11.022.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel H. McQueen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

McQueen, R.H., Ehnes, B. (2018). Antimicrobial Textiles and Infection Prevention: Clothing and the Inanimate Environment. In: Bearman, G., Munoz-Price, S., Morgan, D., Murthy, R. (eds) Infection Prevention. Springer, Cham. https://doi.org/10.1007/978-3-319-60980-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60980-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60978-2

  • Online ISBN: 978-3-319-60980-5

  • eBook Packages: MedicineMedicine (R0)