Introduction and Context

Part of the Applied Quantitative Finance book series (AQF)


To set the context, we start this introduction with a presentation of the main (portfolio) credit derivative contracts that we are interested in. When we talk about portfolio credit derivative valuations, the first thing that we need to do is to generate a set of loss (or default) distributions, at different time horizons, from the single-name curves and some “correlation” assumptions.


  1. S. Amraoui, S. Hitier, Optimal stochastic recovery for base correlation (Working Paper, BNP Paribas, 2008)Google Scholar
  2. L. Andersen, J. Sidenius, S. Basu, All your hedges in one basket. Risk, 67–72 (2003)Google Scholar
  3. L. Andersen, J. Sidenius, Extensions to the Gaussian Copula: random recovery and random factor loadings. J. Credit Risk 1(Winter 2004/05, 1), 29–70 (2005)Google Scholar
  4. S. Assefa, T. Bielecki, S. Crepey, M. Jeanblanc, CVA computation for counterparty risk assessment in credit portfolios, in Credit Risk Frontiers, ed. by T. Bielecki, D. Brigo, F. Patras (Wiley, 2011), pp. 397–436Google Scholar
  5. M. Baxter, Levy process dynamic modelling of single-name credits and CDO tranches (Working Paper, Nomura International plc, 2006)Google Scholar
  6. J. Beumee, D. Brigo, D. Schiemert, G. Stoyle, Charting a Course Through the CDS Big Bang (Fitch Solutions, Quantitative Research, 2009)Google Scholar
  7. D. Brigo, A. Capponi, Bilateral counterparty risk valuation with stochastic dynamical models and applications to credit default swaps (Working Paper, Fitch Solutions, 2009)Google Scholar
  8. D. Brigo, K. Chourdakis, Counterparty risk for credit default swaps: impact of spread volatility and default correlation. Int. J. Theor. Appl. Financ. 12, 1007–1026 (2009)CrossRefGoogle Scholar
  9. D. Brigo, A. Pallavicini, R. Torresetti, Calibration of CDO tranches with the dynamical generalized-poisson loss model. Risk (2007)Google Scholar
  10. X. Burtschell, J. Gregory, J.P. Laurent, Beyond the Gaussian Copula: stochastic and local correlation. J. Credit Risk 3(1), 31–62 (2007)CrossRefGoogle Scholar
  11. S. Crepey, M. Jeanblanc, B. Zargari, Counterparty risk on CDS in a markov chain Copula model with joint defaults, in Recent Advances in Financial Engineering, ed. by M. Kijima, C. Hara, Y. Muromachi, K. Tanaka (World Scientific, 2010), pp. 91–126Google Scholar
  12. D. Duffie, First-to-default valuation (Working Paper, Graduate School of Business, Stanford University, 1998)Google Scholar
  13. D. Duffie, K. Singleton, Modeling term structures of defaultable bonds. Rev. Financ. Stud. 12(4), 687–720 (1999a)CrossRefGoogle Scholar
  14. D. Duffie, K. Singleton, Simulating correlated defaults (Working Paper, Graduate School of Business, Stanford University, 1999b)Google Scholar
  15. N. El Karoui, Y. Jiao, D. Kurtz, Gauss and Poisson approximation: Applications to CDOs tranche pricing. J. Comput. Financ. 12(2), 31–58 (2008)CrossRefGoogle Scholar
  16. Y. Elouerkhaoui, Etude des problèmes de corrélation and d’incomplétude dans les marchés de crédit, Ph.D. Thesis, Université Paris-Dauphine, 2006Google Scholar
  17. K. Giesecke, L. Goldberg, A top down approach to multi-name credit (Working Paper, 2005)Google Scholar
  18. J. Hull, A. White, Valuation of a CDO and \(n\)th-to-default CDS without Monte Carlo simulation. J. Deriv. 2, 8–23 (2004)CrossRefGoogle Scholar
  19. J. Hull, A. White, Valuing credit derivatives using an implied copula approach. J. Deriv. 14(2), 8–28 (2006)CrossRefGoogle Scholar
  20. R. Jarrow, D. Lando, S. Turnbull, A Markov model for the term structure of credit risk spreads. Rev. Financ. Stud. 10(2), 481–523 (1997)CrossRefGoogle Scholar
  21. R. Jarrow, S. Turnbull, Pricing derivatives on financial securities subject to credit risk. J. Financ. 50(1), 53–85 (1995)CrossRefGoogle Scholar
  22. M. Krekel, Pricing distressed CDOs with base correlation and stochastic recovery (Working Paper, Unicredit, 2008)Google Scholar
  23. Lando, Three essays on contingent claims pricing, Ph.D. thesis, Cornell University, 1994Google Scholar
  24. Lando, On cox processes and credit risky securities. Rev. Deriv. Res. 2(2–3), 99–120Google Scholar
  25. J.-P. Laurent, J. Gregory, Basket default swaps. CDOs and factor Copulas. J. Risk 7(4), 103–122 (2005)Google Scholar
  26. D.X. Li, On default correlation: A copula function approach. J. Fixed Income 9, 43–54 (2000)CrossRefGoogle Scholar
  27. F. Lindskog, A.J. McNeil, Common poisson shock models: applications to insurance and credit risk modelling. Astin Bull. 33, 209–238 (2003)CrossRefGoogle Scholar
  28. A. Lipton, A. Rennie, Credit correlation: life after Copulas (World Scientific, Singapore, 2008)Google Scholar
  29. A. Lipton, A. Sepp, Credit value adjustment for credit default swaps via the structural default model. J. Credit Risk 5, 123–146 (2009)CrossRefGoogle Scholar
  30. A. Lipton, I. Savescu, CDSs, CVA and DVA—a Structural Approach. Risk, 60–65 (2013)Google Scholar
  31. F. Longstaff, A. Rajan, An empirical analysis of the pricing of collateralized debt obligations. J. Financ. 63(2), 529–563 (2008)CrossRefGoogle Scholar
  32. L. McGinty, E. Beinstein, R. Ahluwalia, M. Watts, Introducing Base Correlations (Credit Derivatives Strategy, JP Morgan, 2004)Google Scholar
  33. A. Reyfman, K. Ushakova, W. Kong, How to value bespoke tranches consistently with standard ones (Credit Derivatives Research, Bear Stearns, 2004)Google Scholar
  34. P.J. Schönbucher, Portfolio losses and the term structure of loss transition rates: a new methodology for the pricing of portfolio credit derivatives (Working Paper, ETH Zurich, 2005)Google Scholar
  35. D. Shelton, Back To Normal (Global Structured Credit Research, Citigroup, 2004)Google Scholar
  36. J. Sidenius, V. Piterbarg, L. Andersen, A new framework for dynamic credit portfolio loss modeling. Int. J. Theor. Appl. Financ. 11(2), 163–197 (2008)CrossRefGoogle Scholar
  37. R. Torresetti, D. Brigo, A. Pallavicini, Implied expected tranche loss surface from CDO data (Working Paper, 2007)Google Scholar
  38. J. Turc, D. Benhamou, B. Hertzog, M. Teyssier, Pricing Bespoke CDOs: Latest Developments (Quantitative Strategy, Credit Research, Societe Generale, 2006)Google Scholar
  39. J. Turc, P. Very, D. Benhamou, Pricing CDOs with a Smile (Quantitative Strategy, Credit Research, Societe Generale, 2005)Google Scholar
  40. L. Vacca, Unbiased risk-neutral loss distributions. Risk, 97–101 (2005)Google Scholar
  41. O. Vasicek, The loan loss distribution (Working Paper, KMV Corporation, 1997)Google Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.LondonUK

Personalised recommendations