Deep Quantitative Liver Segmentation and Vessel Exclusion to Assist in Liver Assessment

  • Benjamin IrvingEmail author
  • Chloe Hutton
  • Andrea Dennis
  • Sid Vikal
  • Marija Mavar
  • Matt Kelly
  • J. Michael Brady
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 723)


Liver disease, especially Non-Alcoholic Fatty Liver Disease has reached high levels, and there is a need for non-invasive tests based on quantitative MRI to replace biopsy in order to better assess liver health. An automated quantitative liver segmentation approach is required to automate these tests and in this work we propose a fully convolutional framework with a novel objective function for quantitative liver segmentation. The method has (to date) been tested on quantitative T1 maps generated from the UK Biobank study. We obtained extremely encouraging results on an unseen test set with a Dice score of 0.95, and Sensitivity 0.98 and Specificity 0.99.


Segmentation MRI Liver Convolutional neural networks Deep learning 



This research has been conducted using the UK Biobank Resource under application 9914.


  1. 1.
    Banerjee, R., Pavlides, M., Tunnicliffe, E.M., Piechnik, S.K., Sarania, N., Philips, R., Collier, J.D., Booth, J.C., Schneider, J.E., Wang, L.M., Delaney, D.W., Fleming, K.A., Robson, M.D., Barnes, E., Neubauer, S.: Multiparametric magnetic resonance for the non-invasive diagnosis of liver disease. J. Hepatol. 60(1), 69–77 (2014)CrossRefGoogle Scholar
  2. 2.
    Blachier, M., Leleu, H., Peck-Radosavljevic, M., Valla, D.C., Roudot-Thoraval, F.: The burden of liver disease in europe: a review of available epidemiological data. J. Hepatol. 58(3), 593–608 (2013)CrossRefGoogle Scholar
  3. 3.
    Castera, L., Pinzani, M.: Non-invasive assessment of liver fibrosis: are we ready? Lancet 375(9724), 1419 (2010)CrossRefGoogle Scholar
  4. 4.
    Cheng, K., Gu, L., Wu, J., Li, W., Xu, J.: A novel level set based shape prior method for liver segmentation from MRI images. In: Dohi, T., Sakuma, I., Liao, H. (eds.) MIAR 2008. LNCS, vol. 5128, pp. 150–159. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-79982-5_17 CrossRefGoogle Scholar
  5. 5.
    Chollet, F.: Keras (2015).
  6. 6.
    Heimann, T., van Ginneken, B., Styner, M.A., Arzhaeva, Y., Aurich, V., Bauer, C., Beck, A., Becker, C., Beichel, R., Bekes, G., Bello, F., Binnig, G., Bischof, H., Bornik, A., Cashman, P.M.M., Chi, Y., Cordova, A., Dawant, B.M., Fidrich, M., Furst, J.D., Furukawa, D., Grenacher, L., Hornegger, J., Kainmüller, D., Kitney, R.I., Kobatake, H., Lamecker, H., Lange, T., Lee, J., Lennon, B., Li, R., Li, S., Meinzer, H.P., Nemeth, G., Raicu, D.S., Rau, A.M., van Rikxoort, E.M., Rousson, M., Rusko, L., Saddi, K.A., Schmidt, G., Seghers, D., Shimizu, A., Slagmolen, P., Sorantin, E., Soza, G., Susomboon, R., Waite, J.M., Wimmer, A., Wolf, I.: Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans. Med. Imaging 28(8), 1251–1265 (2009)CrossRefGoogle Scholar
  7. 7.
    Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR abs/1412.6980 (2014).
  8. 8.
    Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2015Google Scholar
  9. 9.
    Masoumi, H., Behrad, A., Pourmina, M.A., Roosta, A.: Automatic liver segmentation in mri images using an iterative watershed algorithm and artificial neural network. Biomed. Signal Process. Control 7(5), 429–437 (2012)CrossRefGoogle Scholar
  10. 10.
    Pavlides, M., Banerjee, R., Sellwood, J., Kelly, C.J., Robson, M.D., Booth, J.C., Collier, J., Neubauer, S., Barnes, E.: Multiparametric magnetic resonance imaging predicts clinical outcomes in patients with chronic liver disease. J. Hepatol. 64(2), 308–315 (2016)CrossRefGoogle Scholar
  11. 11.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. CoRR abs/1505.04597 (2015).
  12. 12.
    Wang, F.S., Fan, J.G., Zhang, Z., Gao, B., Wang, H.Y.: The global burden of liver disease: the major impact of China. Hepatology 60(6), 2099–2108 (2014)CrossRefGoogle Scholar
  13. 13.
    Wilman, H.R., Kelly, M., Garratt, S., Matthews, P.M., Milanesi, M., Herlihy, A., Gyngell, M., Neubauer, S., Bell, J.D., Banerjee, R., et al.: Characterisation of liver fat in the UK Biobank cohort. PLoS One 12(2), e0172921 (2017)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Benjamin Irving
    • 1
    Email author
  • Chloe Hutton
    • 1
  • Andrea Dennis
    • 1
  • Sid Vikal
    • 1
  • Marija Mavar
    • 1
  • Matt Kelly
    • 1
  • J. Michael Brady
    • 1
    • 2
  1. 1.Perspectum DiagnosticsOxfordUK
  2. 2.Department of OncologyUniversity of OxfordOxfordUK

Personalised recommendations