Skip to main content

Super Resolution Convolutional Neural Networks for Increasing Spatial Resolution of \(^{1}\)H Magnetic Resonance Spectroscopic Imaging

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2017)

Abstract

Proton magnetic resonance spectroscopic imaging (\(^{1}\)H-MRSI) provides noninvasive information regarding metabolic activity within the tissues. One of the main problems of \(^{1}\)H-MRSI is low spatial resolution due to clinical scan time limitations. Advanced post-processsing algorithms, like convolutional neural networks (CNN) might help with generation of super resolution \(^{1}\)H-MRSI. In this study, the application of super resolution convolutional neural networks (SRCNN) for increasing the spatial resolution of \(^{1}\)H-MRSI is presented. Fluid Attenuated Inversion Recovery (FLAIR), T1-weighted, T2-weighted magnetic resonance imaging (MRI) data and a fused MRI, which contained the three different structural MR images in each RGB channel, were used in training the SRCNN scheme. The spatial resolution of \(^{1}\)H-MRSI images were increased by a factor of three using the models trained with the anatomical MR images. The results of the proposed technique were compared with bicubic resampling in terms of peak signal to noise ratio and root mean square error. Our results indicated that SRCNN would contribute to reconstructing higher resolution \(^{1}\)H-MRSI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://sourceforge.net/projects/bric1936/files/MATLAB/.

References

  1. Nelson, S.J.: Multivoxel magnetic resonance spectroscopy of brain tumors. Mol. Cancer Ther. 2(5), 497–507 (2003)

    Google Scholar 

  2. Filippi, M., Agosta, F.: Imaging biomarkers in multiple sclerosis. J. Magn. Reson. Imaging 31, 770–788 (2010). doi:10.1002/jmri.22102

    Article  Google Scholar 

  3. Rovira, A., Auger, C., Alonso, J.: Magnetic resonance monitoring of lesion evolution in multiple sclerosis. Ther. Adv. Neurol. Disord. 6(5), 298–310 (2013). doi:10.1177/1756285613484079

    Article  Google Scholar 

  4. Camicioli, R.M., Korzan, J.R., Foster, S.L., Fisher, N.J., Emery, D.J., Bastos, A.C., Hanstock, C.C.: Posterior cingulate metabolic changes occur in Parkinsons disease patients without dementia. Neurosci. Lett. 354(3), 177–180 (2004). https://doi.org/10.1016/j.neulet.2003.09.076

    Article  Google Scholar 

  5. Griffith, H.R., Hollander, J.A., Okonkwo, O.C., O’Brien, T., Watts, R.L., Marson, D.C.: Brain N-acetylaspartate is reduced in Parkinson disease with dementia. Alzheimer Dis. Assoc. Disord. 22(1), 54–60 (2008). doi:10.1097/WAD.0b013e3181611011

    Article  Google Scholar 

  6. Andronesi, O.C., Kim, G.S., Gerstner, E., Batchelor, T., Tzika, A.A., Fantin, V.R., Vander Heiden, M.G., Sorensen, A.G.: Detection of 2-hydroxyglutarate in IDH-mutated glioma patients by in vivo spectral-editing and 2D correlation magnetic resonance spectroscopy. Sci. Transl. Med. 4(116), 116ra4 (2012). doi:10.1126/scitranslmed.3002693

    Article  Google Scholar 

  7. Elkhaled, A., Jalbert, L.E., Phillips, J.J., Yoshihara, H.A., Parvataneni, R., Srinivasan, R., Bourne, G., Berger, M.S., Chang, S.M., Cha, S., Nelson, S.J.: Magnetic resonance of 2-hydroxyglutarate in IDH1-mutated low-grade gliomas. Sci. Transl. Med. 4(116), 116ra5 (2012). doi:10.1126/scitranslmed.3002796

    Article  Google Scholar 

  8. Choi, C., Ganji, S.K., DeBerardinis, R.J., Hatanpaa, K.J., Rakheja, D., Kovacs, Z., Yang, X.L., Mashimo, T., Raisanen, J.M., Marin-Valencia, I., Pascual, J.M., Madden, C.J., Mickey, B.E., Malloy, C.R., Bachoo, R.M., Maher, E.A.: 2-hydroxyglutarate detection by magnetic resonance spectroscopy in IDH-mutated patients with gliomas. Nat. Med. 18(4), 624–629 (2012). doi:10.1038/nm.2682

    Article  Google Scholar 

  9. Nelson, S.J., Ozhinsky, E., Li, Y., Park, I., Crane, J.: Strategies for rapid in vivo 1H and hyperpolarized 13C MR spectroscopic imaging. J. Magn. Reson. 229, 187–197 (2013). doi:10.1016/j.jmr.2013.02.003

    Article  Google Scholar 

  10. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989). doi:10.1162/neco.1989.1.4.541

    Article  Google Scholar 

  11. Pang, S., Yang, X.: Deep convolutional extreme learning machine and its application in handwritten digit classification. Comput. Intell. Neurosci. 2016, 10 (2016). doi:10.1155/2016/3049632. Article ID 3049632

    Article  Google Scholar 

  12. Lawrence, S., Giles, C.L., Tsoi, A.C., Back, A.D.: Face recognition: a convolutional neural network approach. IEEE Trans. Neural Netw. 8(1), 98–113 (1997). doi:10.1109/72.554195

    Article  Google Scholar 

  13. Xu, Z., Cheng, X.E.: Zebrafish tracking using convolutional neural networks. Sci. Rep. 7, 42815 (2017). doi:10.1038/srep42815

    Article  Google Scholar 

  14. Pang, S., Yu, Z., Orgun, M.A.: A novel end-to-end classifier using domain transferred deep convolutional neural networks for biomedical images. Comput. Methods Programs Biomed. 140, 283–293 (2017). doi:10.1016/j.cmpb.2016.12.019

    Article  Google Scholar 

  15. Saurabh, J., Diana, M.S., Faezeh, S.N., Gilbert, H., Wolfgang, B., Williams, S., Van Huffel, S., Maes, F., Smeets, D.: Patch-based super-resolution of MR spectroscopic images: application to multiple sclerosis. Front. Neurosci. 11(13) (2017). doi:10.3389/fnins.2017.00013

  16. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2016). doi:10.1109/TPAMI.2015.2439281

    Article  Google Scholar 

  17. Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  18. Provencher, S.W.: Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed. 14(4), 260–264 (2001). doi:10.1002/nbm.698

    Article  Google Scholar 

  19. Smith, S.M., Jenkinson, M., Woolrich, M.W., Beckmann, C.F., Behrens, T.E., Johansen-Berg, H., Bannister, P.R., De Luca, M., Drobnjak, I., Flitney, D.E., Niazy, R.K., Saunders, J., Vickers, J., Zhang, Y., De Stefano, N., Brady, J.M., Matthews, P.M.: Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23(1), S208–S219 (2004). doi:10.1016/j.neuroimage.2004.07.051

    Article  Google Scholar 

  20. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding (2014). arXiv preprint: arXiv:1408.5093

  21. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML 2010), pp. 807–814 (2010)

    Google Scholar 

  22. Valdes, M.DelC., Inamura, M.: Improvement of remotely sensed low spatial resolution images by back-propagated neural networks using data fusion techniques. Int. J. Remote Sens. 22(4), 629–642 (2001)

    Google Scholar 

Download references

Acknowledgements

This study was supported by the Royal Society through the Newton Mobility Grant NI150340. MCVH is funded by Row Fogo Charitable Trust, grant no. BRO-D.FID3668413.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esin Ozturk-Isik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Cengiz, S., Valdes-Hernandez, M.d.C., Ozturk-Isik, E. (2017). Super Resolution Convolutional Neural Networks for Increasing Spatial Resolution of \(^{1}\)H Magnetic Resonance Spectroscopic Imaging. In: Valdés Hernández, M., González-Castro, V. (eds) Medical Image Understanding and Analysis. MIUA 2017. Communications in Computer and Information Science, vol 723. Springer, Cham. https://doi.org/10.1007/978-3-319-60964-5_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60964-5_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60963-8

  • Online ISBN: 978-3-319-60964-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics