Skip to main content

Context-Aware Convolutional Neural Networks for Stroke Sign Detection in Non-contrast CT Scans

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2017)

Abstract

Detection of acute stroke signs in non-contrast CT images is a challenging task. The intensity and texture variations in pathological regions are subtle and can be confounded by normal physiological changes or by old lesions. In this paper we investigate the use of contextual information for stroke sign detection. In particular, the appearance of the contralateral anatomy and the atlas-encoded spatial location are incorporated into a Convolutional Neural Network (CNN) architecture. CNNs are trained separately for the detection of dense vessels and of ischaemia. The network performance is evaluated on 170 datasets by cross-validation. We find that atlas location is important for dense vessel detection, but is less useful for ischaemia, whereas bilateral comparison is crucial for detection of ischaemia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wintermark, M., Albers, G.W., Broderick, J.P., Demchuk, A.M., Fiebach, J.B., Fiehler, J., Grotta, J.C., Houser, G., Jovin, T.G., Lees, K.R., et al.: Acute stroke imaging research roadmap II. Stroke 44(9), 2628–2639 (2013)

    Article  Google Scholar 

  2. Chan, T.: Computer aided detection of small acute intracranial hemorrhage on computer tomography of brain. Comput. Med. Imaging Graph. 31(4), 285–298 (2007)

    Article  Google Scholar 

  3. Dhawan, A.P., Loncaric, S., Hitt, K., Broderick, J., Brott, T.: Image analysis and 3-D visualization of intracerebral brain hemorrhage. In: Proceedings of Sixth Annual IEEE Symposium on Computer-Based Medical Systems, pp. 140–145. IEEE (1993)

    Google Scholar 

  4. Usinskas, A., Dobrovolskis, R.A., Tomandl, B.F.: Ischemic stroke segmentation on CT images using joint features. Informatica 15(2), 283–290 (2004)

    MATH  Google Scholar 

  5. Chawla, M., Sharma, S., Sivaswamy, J., Kishore, L.: A method for automatic detection and classification of stroke from brain CT images. Eng. Med. Biol. Soc. 2009, 3581–3584 (2009)

    Google Scholar 

  6. Kamnitsas, K., Ledig, C., Newcombe, V.F., Simpson, J.P., Kane, A.D., Menon, D.K., Rueckert, D., Glocker, B.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)

    Article  Google Scholar 

  7. Dutil, F., Havaei, M., Pal, C., Larochelle, H., Jodoin, P.-M.: A convolutional neural network approach to brain segmentation. In: Ischemic Stroke Lesion Segmentation, p. 53 (2015)

    Google Scholar 

  8. Lisowska, A., Bereridge, E., Muir, K., Poole, I.: Thrombus detection in ct brain scans using a convolutional neural network. In: Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2017), Bioimaging, vol. 2, pp. 24–33. SCITEPRESS (2017)

    Google Scholar 

  9. Hasan, A., Meziane, F., Khadim, M.: Automated segmentation of tumours in MRI brain scans. In: Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2016), pp. 55–62. SCITEPRESS (2016)

    Google Scholar 

  10. Erihov, M., Alpert, S., Kisilev, P., Hashoul, S.: A cross saliency approach to asymmetry-based tumor detection. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 636–643. Springer, Cham (2015). doi:10.1007/978-3-319-24574-4_76

    Chapter  Google Scholar 

  11. Doyle, S., Vasseur, F., Dojat, M., Forbes, F.: Fully automatic brain tumor segmentation from multiple MR sequences using hidden Markov fields and variational EM. In: Proceedings of NCI-MICCAI BraTS, pp. 18–22 (2013)

    Google Scholar 

  12. O’Neil, A., Murphy, S., Poole, I.: Anatomical landmark detection in CT data by learned atlas location autocontext. In: Medical Image Understanding and Analysis (MIUA), pp. 189–194 (2015)

    Google Scholar 

  13. Payan, A., Montana, G.: Predicting Alzheimers disease: a neuroimaging study with 3D convolutional neural networks. arXiv:1502.02506 (2015)

  14. Huang, X., Cheripelli, B.K., Lloyd, S.M., Kalladka, D., Moreton, F.C., Siddiqui, A., Ford, I., Muir, K.W.: Alteplase versus tenecteplase for thrombolysis after ischaemic stroke (ATTEST): a phase 2, randomised, open-label, blinded endpoint study. Lancet Neurol. 14(4), 368–376 (2015)

    Article  Google Scholar 

  15. Wardlaw, J.M., Muir, K.W., Macleod, M.J., Weir, C., McVerry, F., Carpenter, T., Shuler, K., Thomas, R., Acheampong, P., Dani, K., Murray, A.: Clinical relevance and practical implications of trials of perfusion and angiographic imaging in patients with acute ischaemic stroke: a multicentre cohort imaging study. J. Neurol. Neurosurg. Psychiatry 84(9), 1001–1007 (2013). http://jnnp.bmj.com/content/84/9/1001

    Article  Google Scholar 

  16. Dabbah, M.A., Murphy, S., Pello, H., Courbon, R., Beveridge, E., Wiseman, S., Wyeth, D., Poole, I.: Detection and location of 127 anatomical landmarks in diverse CT datasets. In: SPIE Medical Imaging, pp. 903415–903415. International Society for Optics and Photonics (2014)

    Google Scholar 

  17. Chollet, F.: Keras (2015). https://github.com/fchollet/keras

  18. Theano Development Team. Theano: a Python framework for fast computation of mathematical expressions. arXiv e-prints, vol. abs/1605.02688, May 2016

    Google Scholar 

  19. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  20. Davis, J., Goadrich, M.: The relationship between precision-recall and ROC curves. In: Proceedings of the 23rd International Conference on Machine Learning, ICML 2006, pp. 233–240 (2006)

    Google Scholar 

  21. Ciresan, D., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Deep neural networks segment neuronal membranes in electron microscopy images. In: Advances in Neural Information Processing Systems, pp. 2843–2851 (2012)

    Google Scholar 

  22. Ghafoorian, M., Karssemeijer, N., Heskes, T., van Uder, I., de Leeuw, F., Marchiori, E., van Ginneken, B., Platel, B.: Non-uniform patch sampling with deep convolutional neural networks for white matter hyperintensity segmentation. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 1414–1417. IEEE (2016)

    Google Scholar 

  23. Wolterink, J.M., Leiner, T., Viergever, M.A., Išgum, I.: Automatic coronary calcium scoring in cardiac CT angiography using convolutional neural networks. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 589–596. Springer, Cham (2015). doi:10.1007/978-3-319-24553-9_72

    Chapter  Google Scholar 

  24. Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., Pal, C., Jodoin, P.-M., Larochelle, H.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aneta Lisowska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Lisowska, A. et al. (2017). Context-Aware Convolutional Neural Networks for Stroke Sign Detection in Non-contrast CT Scans. In: Valdés Hernández, M., González-Castro, V. (eds) Medical Image Understanding and Analysis. MIUA 2017. Communications in Computer and Information Science, vol 723. Springer, Cham. https://doi.org/10.1007/978-3-319-60964-5_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60964-5_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60963-8

  • Online ISBN: 978-3-319-60964-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics