Birdsill, A.C., Koscik, R.L., Jonaitis, E.M., Johnson, S.C., Okonkwo, O.C., Hermann, B.P., LaRue, A., Sager, M.A., Bendlin, B.B.: Regional white matter hyperintensities: aging, Alzheimer’s disease risk, and cognitive function. Neurobiol. Aging 35(4), 769–776 (2014)
CrossRef
Google Scholar
Brosch, T., Tang, L.Y.W., Yoo, Y., Li, D.K.B., Traboulsee, A., Tam, R.: Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation. IEEE Trans. Med. Imaging 35(5), 1229–1239 (2016)
CrossRef
Google Scholar
Brosch, T., Yoo, Y., Tang, L.Y.W., Li, D.K.B., Traboulsee, A., Tam, R.: Deep convolutional encoder networks for multiple sclerosis lesion segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 3–11. Springer, Cham (2015). doi:10.1007/978-3-319-24574-4_1
CrossRef
Google Scholar
Chollet, F.: Keras (2015). https://github.com/fchollet/keras
Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)
MATH
Google Scholar
Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)
CrossRef
Google Scholar
Hinton, G.: A practical guide to training restricted boltzmann machines. Momentum 9(1), 926 (2010)
Google Scholar
Ithapu, V., Singh, V., Lindner, C., Austin, B.P., Hinrichs, C., Carlsson, C.M., Bendlin, B.B., Johnson, S.C.: Extracting and summarizing white matter hyperintensities using supervised segmentation methods in Alzheimer’s disease risk and aging studies. Hum. Brain Mapp. 35(8), 4219–4235 (2014)
Google Scholar
Jenkinson, M., Bannister, P., Brady, M., Smith, S.: Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17(2), 825–841 (2002)
CrossRef
Google Scholar
Klöppel, S., Abdulkadir, A., Hadjidemetriou, S., Issleib, S., Frings, L., Thanh, T.N., Mader, I., Teipel, S.J., Hüll, M., Ronneberger, O.: A comparison of different automated methods for the detection of white matter lesions in MRI data. NeuroImage 57(2), 416–422 (2011)
CrossRef
Google Scholar
Leite, M., Rittner, L., Appenzeller, S., Ruocco, H.H., Lotufo, R.: Etiology-based classification of brain white matter hyperintensity on magnetic resonance imaging. J. Med. Imaging 2(1), 014002 (2015)
CrossRef
Google Scholar
Liu, M., Zhang, D., Yap, P.-T., Shen, D.: Hierarchical ensemble of multi-level classifiers for diagnosis of Alzheimer’s disease. In: Wang, F., Shen, D., Yan, P., Suzuki, K. (eds.) MLMI 2012. LNCS, vol. 7588, pp. 27–35. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35428-1_4
CrossRef
Google Scholar
Lutkenhoff, E.S., Rosenberg, M., Chiang, J., Zhang, K., Pickard, J.D., Owen, A.M., Monti, M.M.: Optimized brain extraction for pathological brains (optibet). PLoS ONE 9(12), e115551 (2014)
CrossRef
Google Scholar
Mueller, S.G., Weiner, M.W., Thal, L.J., Petersen, R.C., Jack, C., Jagust, W., Trojanowski, J.Q., Toga, A.W., Beckett, L.: The Alzheimer’s disease neuroimaging initiative. Neuroimaging Clin. N. Am. 15(4), 869–877 (2005)
CrossRef
Google Scholar
Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-2010), pp. 807–814 (2010)
Google Scholar
Nyúl, L.G., Udupa, J.K., Zhang, X.: New variants of a method of MRI scale standardization. IEEE Trans. Med. Imaging 19(2), 143–150 (2000)
CrossRef
Google Scholar
Opitz, D., Maclin, R.: Popular ensemble methods: an empirical study. J. Artif. Intell. Res. 11, 169–198 (1999)
MATH
Google Scholar
Salakhutdinov, R., Hinton, G.E.: Deep boltzmann machines. In: International Conference on Artificial Intelligence and Statistics, pp. 448–455 (2009)
Google Scholar
Schmidt, P., Gaser, C., Arsic, M., Buck, D., Förschler, A., Berthele, A., Hoshi, M., Ilg, R., Schmid, V.J., Zimmer, C., et al.: An automated tool for detection of flair-hyperintense white-matter lesions in multiple sclerosis. Neuroimage 59(4), 3774–3783 (2012)
CrossRef
Google Scholar
Valéds Hernández, M.D.C., Armitage, P.A., Thrippleton, M.J., Chappell, F., Sandeman, E., Muoz Maniega, S., Shuler, K., Wardlaw, J.M.: Rationale, design, methodology of the image analysis protocol for studies of patients with cerebral small vessel disease, mild stroke. Brain Behav. 5(12), e00415 (2015)
Google Scholar
Wardlaw, J.M., Smith, E.E., Biessels, G.J., Cordonnier, C., Fazekas, F., Frayne, R., Lindley, R.I., O’Brien, J.T., Barkhof, F., Benavente, O.R., et al.: Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 12(8), 822–838 (2013)
CrossRef
Google Scholar
Weiner, M.W., Veitch, D.P., Aisen, P.S., Beckett, L.A., Cairns, N.J., Green, R.C., Harvey, D., Jack, C.R., Jagust, W., Liu, E., et al.: The Alzheimers disease neuroimaging initiative: a review of papers published since its inception. Alzheimer’s Dement. 8(1), S1–S68 (2012)
CrossRef
Google Scholar