End-to-End Learning of a Conditional Random Field for Intra-retinal Layer Segmentation in Optical Coherence Tomography

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 723)

Abstract

Intra-retinal layer segmentation of Optical Coherence Tomography images is critical in the assessment of ocular diseases. Existing Energy minimization based methods employ handcrafted cost terms to define their energy and are not robust to the presence of abnormalities. We propose a novel, Linearly Parameterized, Conditional Random Field (LP-CRF) model whose energy is learnt from a set of training images in an end-to-end manner. The proposed LP-CRF comprises two convolution filter banks to capture the appearance of each tissue region and boundary, the relative weights of the shape priors and an additional term based on the appearance similarity of the adjacent boundary points. All the energy terms are jointly learnt using the Structured Support Vector Machine. The proposed method segments all retinal boundaries in a single step. Our method was evaluated on 107 Normal and 220 AMD B-scan images and found to outperform three publicly available OCT segmentation software. The average unsigned boundary localization error is \(1.52 \pm 0.29\) pixels for segmentation of 8 boundaries on the Normal dataset and \(1.9 \pm 0.65\) pixels for 3 boundaries on the combined AMD and Normal dataset establishing the robustness of the proposed method.

Keywords

CRF SSVM OCT Segmentation 

References

  1. 1.
    Chiu, S.J., Izatt, J.A., O’Connell, R.V., Winter, K.P., Toth, C.A., Farsiu, S.: Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images. IOVS 53(1), 53–61 (2012)Google Scholar
  2. 2.
    Chiu, S.J., Li, X.T., Nicholas, P., Toth, C.A., Izatt, J.A., Farsiu, S.: Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation. Opt. Exp. 18(18), 19413–19428 (2010)CrossRefGoogle Scholar
  3. 3.
    Finley, T., Joachims, T.: Training structural SVMs when exact inference is intractable. In: ICML, pp. 304–311 (2008)Google Scholar
  4. 4.
    Garvin, M.K., Abramoff, M.D., Wu, X., Russell, S.R., Burns, T.L., Sonka, M.: Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images. IEEE TMI 28(9), 1436–1447 (2009)Google Scholar
  5. 5.
    Ishikawa, H., Stein, D.M., Wollstein, G., Beaton, S., Fujimoto, J.G., Schuman, J.S.: Macular segmentation with optical coherence tomography. IOVS 46(6), 2012–2017 (2005)Google Scholar
  6. 6.
    Kolmogorov, V.: Convergent tree-reweighted message passing for energy minimization. IEEE PAMI 28(10), 1568–1583 (2006)CrossRefGoogle Scholar
  7. 7.
    Lacoste-Julien, S., Jaggi, M., Schmidt, M., Pletscher, P.: Block-coordinate frank-wolfe optimization for structural SVMs. In: ICML, pp. 53–61 (2013)Google Scholar
  8. 8.
    Mayer, M., Hornegger, J., Mardin, C.Y., Tornow, R.P.: Retinal nerve fiber layer segmentation on FD-OCT scans of normal subjects and glaucoma patients. Opt. Exp. 1(5), 1358–1383 (2010)CrossRefGoogle Scholar
  9. 9.
    Novosel, J., Thepass, G., Lemij, H.G., de Boer, J.F., Vermeer, K.A., van Vliet, L.J.: Loosely coupled level sets for simultaneous 3D retinal layer segmentation in optical coherence tomography. Med. Image Anal. 26(1), 146–158 (2015)CrossRefGoogle Scholar
  10. 10.
    Nyul, L.G., Udupa, J.K., Zhang, X.: New variants of a method of MRI scale standardization. IEEE TMI 19(2), 143–150 (2000)Google Scholar
  11. 11.
    Rossant, F., Bloch, I., Ghorbel, I., Paques, M.: Parallel double snakes. Application to the segmentation of retinal layers in 2D-OCT for pathological subjects. Pattern Recogn. 48(12), 3857–3870 (2015)CrossRefGoogle Scholar
  12. 12.
    Shi, F., Chen, X., Zhao, H., Zhu, W., Xiang, D., Gao, E., Sonka, M., Chen, H.: Automated 3-D retinal layer segmentation of macular optical coherence tomography images with serous pigment epithelial detachments. IEEE TMI 34(2), 441–452 (2015)Google Scholar
  13. 13.
    Song, Q., Bai, J., Garvin, M.K., Sonka, M., Buatti, J.M., Wu, X.: Optimal multiple surface segmentation with shape and context priors. IEEE TMI 32(2), 376–386 (2013)Google Scholar
  14. 14.
    Yazdanpanah, A., Hamarneh, G., Smith, B.R., Sarunic, M.V.: Segmentation of intra-retinal layers from optical coherence tomography images using an active contour approach. IEEE TMI 30(2), 484–496 (2011)Google Scholar
  15. 15.
    Yu, Y., Acton, S.T.: Speckle reducing anisotropic diffusion. IEEE TIP 11(11), 1260–1270 (2002)MathSciNetGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Center for Visual Information TechnologyIIIT HyderabadHyderabadIndia

Personalised recommendations